Устойчивая степень окисления марганца. Химические свойства

История марганца

Первооткрывателями марганца принято считать шведских химиков К. Шееле и Ю. Гана, первый из которых в 1774 году обнаружил неизвестный металл в широко используемой железной руде, называемой в древности чёрной магнезией, второй же путём нагревания смеси пиролюзита (основного минерала марганца) с углём получил металлический марганец ( calorizator). Название новый металл получил от немецкого Manganerz , т.е. марганцевая руда.

Марганец является элементом побочной подгруппы VII группы IV периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 25 и атомную массу 54,9380. Принятое обозначение - Mn (от латинского Manganum).

Нахождение в природе

Марганец достаточно распространён, входит во вторую десятку элементов по распространённости. В земной коре встречается чаще всего совместно с железными рудами, но имеются и месторождения именно марганца, например в Грузии и России.

Марганец является тяжёлым серебристо-белым металлом, так называемым чёрным металлом. При нагревании имеет свойство разлагать воду, вытесняя водород. В обычном состоянии поглощает водород.

Суточная потребность в марганце

Для взрослого здорового человека суточная потребность в марганце составляет 5-10 мг.

Марганец попадает в организм человека с пищей, поэтому в обязательном порядке необходимо ежедневно съедать один или несколько продуктов из следующего списка:

  • орехи ( , )
  • крупы и злаки ( , пшеница)
  • бобовые ( , )
  • овощи и зелень ( , )
  • ягоды и фрукты ( , )
  • грибы ( , )


Полезные свойства марганца и его влияние на организм

Функции марганца в организме человека:

  • регуляция уровня глюкозы в крови, стимуляция выработки
  • профилактика сахара диабета путём снижения уровня сахара в крови
  • нормализация мозговой деятельности и процессов в нервной системе
  • участие в работе поджелудочной железы и синтезе холестерина
  • способствование росту соединительных тканей, хрящей и костей
  • влияние на липидный обмен и предотвращение избыточного отложения жира в печени
  • участие в делении клеток
  • снижение активности «плохого» холестерина и замедление роста холестериновых бляшек.

Взаимодействие с другими

Марганец помогает активизировать ферменты, необходимые для правильного использования организмом , и . Взаимодействие марганца с и является признанным антиоксидантным средством. Большие дозы и будут задерживать всасывание марганца.

Наибольшее применение марганец нашёл в металлургии, также при производстве реостатов, гальванических элементов. Соединения марганца используют как термоэлектрический материал.

Признаки нехватки марганца

При режиме питания, утяжелённом большим количеством углеводов, в организме происходит перерасход марганца, что проявляется следующими симптомами: анемия, снижение прочности костей, задержка роста, а также атрофия яичников у женщин и яичек у мужчин.

Признаки избытка марганца

Излишек марганца также неполезен организму, его проявлениями могут служить сонливость, боли в мышцах, потеря аппетита и изменения в формировании костей - так называемый «марганцевый» рахит.

Марганец — ценный для человека металл.

Химические свойства марганца определяют широкое использование его в качестве сырья для промышленного производства сплавов высокого качества. Соединения элемента применяются в медицине, сельском хозяйстве.

Физические и химические свойства металла

  1. Впервые химический элемент был обнаружен шведскими химиками в железной руде. Его извлекли путем нагревания смеси рудного материала с углем. В результате был извлечен металлический компонент, получивший свое название от немецкого слова, обозначающего «марганцевая руда».
  2. Химический элемент относится к ряду переходных и может образовывать соединения, содержащие атомы в степени окисления 0. При нагревании проявляет свойство вытеснять водород, разлагая воду.
  3. В природе этот хрупкий металл, отличающийся серебристым цветом, встречается только в соединениях. Его извлекают из рудного сырья, среди которого наиболее распространены такие виды:пиролюзит,манганит, псиломелан, браунит.
  4. Металл находится в марганцевых конкрециях, находящихся на дне океанов. Технология извлечения их со дна связана с использованием специального оборудования и не имеет промышленного характера.
  5. Марганец легко образует оксиды в результате окисления на воздухе. В зависимости от изменения температурного градиента при нагревании он реагирует с азотом, серой, кремнием. При поглощении водорода марганец образовывает твердые растворы.
  6. Его трудно растворить в воде при обычной комнатной температуре. В концентрированных кислотах он растворяется при нагревании, образовывая соли.
  7. Химический элемент № 25 отличается активностью в процессе реакций восстановления металлов из оксидов. Он вытесняет металлы, образовывая соединение с кислородом.

Технология извлечения химического элемента

Основными производителями и поставщиками металла на мировой рынок являются Бразилия, Австралия, ЮАР и Украина. Именно в этих странах находятся запасы руды, составляющие почти 73% мировых.

Получение черного металла в промышленных масштабах начинается с извлечения руд и их обогащения и зависит от соединений металла с другими элементами. Например, обычная карбонатная руда подвергается предварительному обжигу. В отдельных случаях ее выщелачивают с использованием серной кислоты с последующим термическим восстановлением с помощью кокса. Иногда для восстановления металла используется алюминий или кремний.

Химические процессы извлечения марганца.

Чистый металл извлекают электролизом из водных растворов сульфата марганца.

Применение марганца в промышленном производстве

  1. Основная часть металла используется для нужд черной металлургии в качестве добавки, а в мировых масштабах его потребление находится на 4 месте после основного сырья: железа, алюминия и меди. Марганец является обязательным элементом, присутствующим во всех видах чугуна и стали. Уникальное свойство марганца образовывать сплавы с большинством металлов используется для изготовления:
  • разных сортов марганцевой стали;
  • манганитов (сплав, в котором отсутствует железо).

Другие сферы применения металла

Свойства химического элемента и его соединений используются в промышленном производстве:

  • в качестве катализатора органических реакций;
  • для разложения неорганических солей;
  • для производства стекла;
  • при покрытии металлических поверхностей;
  • в керамической отрасли для окрашивания глазури и эмали
  • для адсорбции вредных веществ;
  • для отбеливания натуральных материалов (лен, шерсть).

Отходы, полученные в результате обработки металлического сырья с участием марганца, применяются в сельском хозяйстве для обогащения почвы под культуры ценным компонентом.

Химии этого элемента принадлежит важная роль в медицине.
Соли марганца применяют для образования антисептического водного раствора, чтобы промывать раны, обрабатывать ожоги.

Химический элемент № 25 необходим для нормальной деятельности организма, регулирования уровня глюкозы в крови, профилактики заболевания сахарным диабетом, обеспечения нормальной работы поджелудочной железы.

Недостаток марганца в организме человека может спровоцировать заболевание. Суточная потребность человека в важном микроэлементе составляет почти 10 мг. Его источниками для организма являются продукты питания:


Некоторые виды насекомых и растений способны концентрировать этот химический элемент, обеспечивающий активацию ферментов, участвующих в процессе дыхания, фотосинтеза.

Mn — Марганец

МАРГАНЕЦ (лат. Manganum), Mn, химический элемент с атомным номером 25, атомная масса 54,9380. Химический символ элемента Mn произносится так же, как и название самого элемента. Природный марганец состоит только из нуклида 55 Mn. Конфигурация двух внешних электронных слоев атома марганца 3s 2 p 6 d 5 4s 2 . В периодической системе Д. И. Менделеева марганец входит в группу VIIВ, к которой относятся также технеций и рений, и располагается в 4-м периоде. Образует соединения в степенях окисления от +2 (валентность II) до +7 (валентность VII), наиболее устойчивы степени окисления +2 и +7. У марганца, как и у многих других переходных металлов, известны также соединения, содержащие атомы марганца в степени окисления 0.

Радиус нейтрального атома марганца 0,130 нм, радиус иона Mn 2+ — 0,080-0,104 нм, иона Mn 7+ — 0,039-0,060 нм. Энергии последовательной ионизации атома марганца 7,435, 15,64, 33,7, 51,2, 72,4 эВ. По шкале Полинга электроотрицательность марганца 1,55; марганец принадлежит к числу переходных металлов.

Марганец в компактном виде — твердый серебристо-белый металл.

Физические и химические свойства: марганец твердый хрупкий металл. Известны четыре кубические модификации металлического марганца. При температурах от комнатной и до 710°C устойчив a-Mn, параметр решетки а = 0,89125 нм, плотность 7,44 кг/дм 3 . В интервале температур 710-1090°C существует b-Mn, параметр решетки а = 0,6300 нм; при температурах 1090-1137°C — g-Mn, параметр решетки а = 0,38550 нм. Наконец, при температуре от 1137°C и до температуры плавления (1244°C) устойчив d-Mn с параметром решетки а = 0,30750 нм. Модификации a, b, и d хрупкие, g-Mn пластичен. Температура кипения марганца около 2080°C.

На воздухе марганец окисляется, в результате чего его поверхность покрывается плотной оксидной пленкой, которая предохраняет металл от дальнейшего окисления. При прокаливании на воздухе выше 800°C марганец покрывается окалиной, состоящей из внешнего слоя Mn 3 O 4 и внутреннего слоя состава MnO.

Марганец образует несколько оксидов: MnO, Mn 3 O 4 , Mn 2 O 3 , MnO 2 и Mn 2 O 7 . Все они, кроме Mn 2 O 7 , представляющего собой при комнатной температуре маслянистую зеленую жидкость с температурой плавления 5,9°C, твердые кристаллические вещества.

Монооксид марганца MnO образуется при разложении солей двухвалентного марганца (карбоната и других) при температуре около 300°C в инертной атмосфере:

MnCO 3 = MnO + CO 2

Этот оксид обладает полупроводниковыми свойствами. При разложении MnOОН можно получить Mn 2 O 3 . Этот же оксид марганца образуется при нагревании MnO 2 на воздухе при температуре примерно 600°C:

4MnO 2 = 2Mn 2 O 3 + O 2

Оксид Mn 2 O 3 восстанавливается водородом до MnO, а под действием разбавленных серной и азотной кислот переходит в диоксид марганца MnO 2 .

Если MnO 2 прокаливать при температуре около 950°C, то наблюдается отщепление кислорода и образование оксида марганца состава Mn 3 O 4:

3MnO 2 = Mn 3 O 4 + O 2

Этот оксид можно представить как MnO·Mn 2 О 3 , и по свойствам Mn 3 О 4 соответствует смеси этих оксидов.

Диоксид марганца MnO 2 — наиболее распространенное природное соединение марганца в природе, существующее в нескольких полиморфных формах. Так называемая b-модификация MnO 2 — это уже упоминавшийся минерал пиролюзит. Ромбическая модификация диоксида марганца, g-MnO 2 также встречается в природе. Это — минерал рамсделит (другое название — полианит).

Диоксид марганца нестехиометричен, в его решетке всегда наблюдается дефицит кислорода. Если оксиды марганца, отвечающие его более низким степеням окисления, чем +4, — основные, то диоксид марганца обладает амфотерными свойствами. При 170°C MnO 2 можно восстановить водородом до MnO.

Если к перманганату калия KMnO 4 добавить концентрированную серную кислоту, то образуется кислотный оксид Mn 2 O 7 , обладающий сильными окислительными свойствами:

2KMnO 4 + 2H 2 SO 4 = 2KHSO 4 + Mn 2 O 7 + H 2 O.

Mn 2 O 7 — кислотный оксид, ему отвечает сильная, не существующая в свободном состоянии марганцовая кислота НMnO 4 .

При взаимодействии марганца с галогенами образуются дигалогениды MnHal 2 . В случае фтора возможно также образование фторидов состава MnF 3 и MnF 4 , а в случае хлора — также трихлорида MnCl 3 . Реакции марганца с серой приводят к образованию сульфидов составов MnS (существует в трех полиморфных формах) и MnS 2 . Известна целая группа нитридов марганца: MnN 6 , Mn 5 N 2 , Mn 4 N, MnN, Mn 6 N 5 , Mn 3 N 2 .

С фосфором марганец образует фосфиды составов MnР, MnP 3 , Mn 2 P, Mn 3 P, Mn 3 P 2 и Mn 4 P. Известно несколько карбидов и силицидов марганца.

С холодной водой марганец реагирует очень медленно, но при нагревании скорость реакции значительно возрастает, образуется Mn(OH) 2 и выделяется водород. При взаимодействии марганца с кислотами образуются соли марганца (II):

Mn + 2HCl = MnCl 2 + H 2 .

Из растворов солей Mn 2+ можно осадить плохо растворимое в воде основание средней силы Mn(OH) 2:

Mn(NO 3) 2 + 2NaOH = Mn(OH) 2 + 2NaNO 3

Марганцу отвечает несколько кислот, из которых наиболее важны сильные неустойчивые марганцоватая кислота H 2 MnO 4 и марганцовая кислота HMnO 4 , соли которых — соответственно, манганаты (например, манганат натрия Na 2 MnO 4) и перманганаты (например, перманганат калия KMnO 4).

Манганаты (известны манганаты только щелочных металлов и бария) могут проявлять свойства как окислителей (чаще)

2NaI + Na 2 MnO 4 + 2H 2 O = MnO 2 + I 2 + 4NaOH,

так и восстановителей

2K 2 MnO 4 + Cl 2 = 2KMnO 4 + 2KCl.

В водных растворах манганаты диспропорционируют на соединения марганца (+4) и марганца (+7):

3K 2 MnO 4 + 3Н 2 О = 2KMnO 4 + MnO 2 ·Н 2 О + 4КОН.

При этом окраска раствора из зеленой переходит в синюю, затем в фиолетовую и малиновую. За способность изменять окраску своих растворов К. Шееле назвал манганат калия минеральным хамелеоном.

Перманганаты — сильные окислители. Например, перманганат калия KMnO 4 в кислой среде окисляет сернистый газ SO 2 до сульфата:

2KMnO 4 + 5SO 2 +2H 2 O = K 2 SO 4 + 2MnSO 4 + 2H 2 SO 4 .

При давлении около 10 МПа безводный MnCl 2 в присутствии металлоорганических соединений реагирует с оксидом углерода (II) CO с образованием биядерного карбонила Mn 2 (CO) 10 .

История открытия: один из основных материалов марганца — пиролюзит — был известен в древности как черная магнезия и использовался при варке стекла для его осветления. Его считали разновидностью магнитного железняка, а тот факт, что он не притягивается магнитом, Плиний Старший объяснил женским полом черной магнезии, к которому магнит «равнодушен». В 1774 г. шведский химик К. Шееле показал, что в руде содержится неизвестный металл. Он послал образцы руды своему другу химику Ю. Гану, который, нагревая в печке пиролюзит с углем, получил металлический марганец. В начале 19 в. для него было принято название «манганум» (от немецкого Manganerz — марганцевая руда).

Нахождение в природе: в земной коре содержание марганца составляет около 0,1 % по массе. В свободном виде марганец не встречается. Из руд наиболее распространены пиролюзит MnO 2 (содержит 63,2 % марганца), манганит MnO 2 ·Mn(OH) 2 (62,5 % марганца), браунит Mn 2 O 3 (69,5 % марганца), родохрозит MnCo 3 (47,8 % марганца), псиломелан mMnO·MnO 2 ·nH 2 O (45-60% марганца) и ряд других. Марганец содержат железо-марганцевые конкреции, которые в больших количествах (сотни миллиардов тонн) находятся на дне Тихого, Атлантического и Индийского океанов. В морской воде содержится около 1,0·10 –8 % марганца. Промышленного значения эти запасы марганца пока не имеют из-за сложности подъема конкреций на поверхность.

Получение: промышленное получение марганца начинается с добычи и обогащения руд. Если используют карбонатную руду марганца, то ее предварительно подвергают обжигу. В некоторых случаях руду далее подвергают сернокислотному выщелачиванию. Затем обычно марганец в полученном концентрате восстанавливают с помощью кокса (карботермическое восстановление). Иногда в качестве восстановителя используют алюминий или кремний. Для практических целей чаще всего используют ферромарганец, полученный в доменном процессе при восстановлении руд железа и марганца коксом. В ферромарганце содержание углерода составляет 6-8 % по массе.

Чистый марганец получают электролизом водных растворов сульфата марганца MnSO 4 , который проводят в присутствии сульфата аммония (NH 4) 2 SO 4 .

Применение: более 90% производимого марганца идет в черную металлургию. Марганец используют как добавку к сталям для их раскисления, десульфурации (при этом происходит удаление из стали нежелательных примесей — кислорода, серы и других), а также для легирования сталей, т. е. улучшения их механических и коррозионных свойств. Марганец применяется также в медных, алюминиевых и магниевых сплавах. Покрытия из марганца на металлических поверхностях обеспечивают их антикоррозионную защиту. Для нанесения тонких покрытий из марганца используют легко летучий и термически нестабильный биядерный декакарбонил Mn 2 (CO) 10 .

Соединения марганца (карбонат, оксиды и другие) используют при производстве ферритных материалов, они служат катализаторами многих химических реакций, входят в состав микроудобрений.

Биологическая роль: марганец — микроэлемент , постоянно присутствующий в живых организмах и необходимый для их нормальной жизнедеятельности. Содержание марганца в растениях составляет 10 –4 -10 –2 %, в животных 10 –3 -10 –5 %, некоторые растения (водяной орех, ряска, диатомовые водоросли) и животные (муравьи, устрицы, ряд ракообразных) способны концентрировать марганец. В организме среднего человека (масса тела 70 кг) содержится 12 мг марганца. Марганец необходим животным и растениям для нормального роста и размножения. Он активирует ряд ферментов, участвует в процессах дыхания, фотосинтеза, влияет на проветривание и минеральный обмен.

Содержание статьи

МАРГАНЕЦ – химический элемент 7-й группы периодической системы, атомный номер 25, атомная масса 54,938. Марганец расположен в четвертом периоде между хромом и железом; постоянным спутником последнего он является и в природе. Есть только один устойчивый изотоп 55 Mn. Природный марганец целиком состоит из изотопа 55 Mn. Установлено, что неустойчивые ядра с массовыми числами 51, 52, 54 и 57 получаются при бомбардировке соседних (по периоду) элементов дейтронами, нейтронами, протонами, альфа-частицами или фотонами. Например, радиоактивный изотоп 57 Mn был выделен путем химического разделения из продуктов бомбардировки и его период полураспада составляет 1,7±0,1 мин.

Марганец, в соответствии с номером группы, проявляет максимальную степень окисления, равную +7, но может существовать также во всех более низких степенях окисления от 0 до +7. Наиболее важные из них – два, четыре и семь.

Некоторые соединения марганца известны еще с древних времен. Диоксид марганца (пиролюзит) считали разновидностью магнитного железняка (magnes) и применяли в качестве «мыла стекловаров», из-за его способности обесцвечивать железосодержащие стекла. Это свойство пиролюзита было открыто очень давно, и в древних рукописях минерал может быть опознан не столько по многочисленным и различным наименованиям его, сколько по этому индивидуальному характерному признаку. Древнеримский историк Плиний Старший , погибший при извержении Везувия, назвал черный немагнитный пиролюзит «женским магнитом» в отличие от коричневого магнитного железняка. В средневековье мастера стеклянных дел уже различали magnesius lapis – магнитный железняк и pseudomagnes (фальшивый магнит) – пиролюзит. Название пиролюзит было впервые дано этому минералу В. Хейденгером в 1826, который исходил из его использования в производстве стекла: от греческого pur– огонь и luen– мыть. Подобные же рассуждения есть в описании этого минерала Роже де Л"Илем, который называл его le savon des verriers или sapo vitriorum (мыло стекольщиков). В действительности, как упоминалось выше, минерал был описан значительно раньше Плинием под названием magnesius lapis и алхимиком Василием Валентином под названием Braunstein, который назвал его так потому, что этот минерал (в большинстве случаев черно-серого цвета) давал коричневую глазурь на глиняных изделиях. Интересна история происхождения названия минерала – magnesius lapis, от которого и происходит современное название элемента. Хотя пиролюзит и немагнитен, что признавал и Плиний, он соглашался рассматривать его как lapis magnesius из-за внешнего сходства, обьясняя его отличие от других минералов, притягивающихся к железу, разницей полов: железомарганцовистый magnesius lapis – женского рода и поэтому, по убеждению древних, более привлекателен. Плиний также обьяснял применение слова magnes, связывая его с именем пастуха Magnes, наблюдавшего, что гвозди его башмаков и железный наконечник палки притягивались к земле в том месте, где был найден магнитный железняк. Однако возможно, что это наименование связано с тем, что одна из разновидностей lapis magnes, имеющая белую окраску, была обнаружена в Азии на территории, называемой Магнезия. Согласно другой гипотезе, выдвинутой Л.Делатре, предполагается, что термин обязан своим происхождением греческому слову magganon – иллюзии; это связывается с хрупким и неустойчивым поведением металла, полученного из руды и внешне сходного с железной рудой. Делатре также предполагал, что термин связан с местностью Мангана в Восточной Индии. Термин manganesis чаще всего встречается в работах Альбертуса Магнуса (1193–1280). В более поздних материалах термин несколько видоизменился: вместо «магнезия» (magnesia) – «марганец» (manganese). Только в 1774 великий шведский химик Карл Вильгельм Шееле установил, что марганцевая руда и ее концентрат содержат неизвестный ранее металл. В его знаменитом исследовании свойств пиролюзита, представленном Стокгольмской академии наук, он, тем не менее, сообщал об открытии другого нового элемента – хлора. Хотя Шееле и открыл этот металл, ему не удалось выделить его в чистом виде. В этом же году Юхан Ган получил королек металла (braunsteinmetall) прокаливанием смеси пиролюзита с углем. Ган скатывал из оксида марганца шарики, нагревал их в тигле, выложенном древесным углем, и при этом получил большое количество маленьких металлических глобул, составляющих одну треть по весу от используемого минерала. Предполагают также, что именно Ган предложил для нового вещества название марганец, однако еще долгое время полученный металл продолжали называть так же, как и руду, – браунштайн. Термин марганец стал всеобщим лишь в начале 19 в. Его назвали manganesium. Позднее этот металл, чтобы не было путаницы с открытым в то же время магнием (magnasium), был переименован в manganium. В России, в первой половине 19 в. испеользовалось название марганцовик, а позже можно было встретить другое – манганес, связанное с изготовлением финифти пурпурного цвета.

Марганец встречается на всех континентах во многих кристаллических породах, в которых он, подобно железу, растворяется и вновь выделяется в виде оксидов, карбонатов, гидроксидов, вольфраматов, силикатов, сульфатов и других соединений. После железа марганец – самый распространенный из тяжелых металлов и пятнадцатый среди всех элементов периодической системы. Содержание его в земной коре составляет 0,1% по массе или 0,03% от общего числа атомов. Залежи марганцевых руд распространены практически повсеместно, но наиболее крупные из них расположены на территории бывшего СССР – единственной страны-производителя марганца в мире, удовлетворявшей свои огромные потребности в концентрате собственными внутренними ресурсами. Самые значительные месторождения залегают в двух основных районах: около Чиатури (Грузия) и близ Никополя, на Днепре. В 1913 царская Россия поставляла 52% мирового экспорта марганца, около 76% которого (миллион тонн), добывалось в Чиатури. Чиатурское месторождение служило источником получения иностранной валюты в 1920-х. После революции рудник восстановили в 1923, и с тех пор у причалов Поти собирались десятки иностранных кораблей, вывозивших руду. С распадом Советского Союза основные залежи остались за пределами России – на Украине, в Казахстане и Грузии. Количество импортируемой в Россию марганцевой руды сейчас составляет в пересчете на товарную марганцевую руду 1,6 млн. т. Потребность же промышленности России на сегодняшний день оценивается в 6,0 млн. т. марганцевой руды (или 1,7–1,8 млн. т. концентрата). Крупными месторождениями марганцевой руды владеют Китай, Индия, Гана, Бразилия, Южно-Африканская республика, Габон, Марокко, США, Австралия, Италия, Австрия. Общая мировая добыча марганца составляет 20–25 млн. тонн в год в пересчете на металл. На Земле есть множество минералов, содержащих марганец, наиболее важные – пиролюзит (гидратированный диоксид марганца, MnO 2), браунит (Mn 2 O 3), манганит (MnOOH), родохрозит (MnCO 3). Колонны, поддерживающие своды станции метро «Маяковская» в Москве, украшены тонким обрамлением из розового минерала – родонита (метасиликата марганца). Податливость и нежный цвет делают этот камень замечательным облицовочным материалом. Изделия из родонита хранятся в Государственном Эрмитаже и многих других музеях России. Большие залежи этого минерала встречаются на Урале, где когда-то была найдена глыба родонита массой в сорок семь тонн. Уральское месторождение родонита самое крупное в мире.

Огромное количество марганцевых минералов сосредоточено на дне Мирового океана. Только в Тихом океане ресурсы этого элемента достигают, по разным оценкам, от нескольких десятков до нескольких сотен миллиардов тонн. Железо-марганцевые конкреции (а именно так называют отложения этих двух элементов на дне океана) обусловлены постоянным окислением (за счет растворенного в воде кислорода) растворимых соединений двухвалентного марганца. Еще в 1876 британский трехмачтовый парусник «Челленджер», возвращаясь из научной экспедиции, привез образцы «марганцевых почек». Последующие экспедиции показали, что на дне Мирового океана сосредоточено огромное количество железо-марганцевых конкреций. До середины двадцатого столетия они не привлекали к себе особого внимания и лишь потом, когда некоторые «сухопутные» месторождения оказались под угрозой истощения, их стали рассматривать как реальные источники марганцевого концентрата. Содержание марганца в такой «подводной» руде иногда достигает 50%. По своей форме конкреции напоминают картофельные клубеньки и имеют цвет от коричневого до черного в зависимости от того, какой элемент в них преобладет – железо или марганец. Размеры большинства таких образований колеблются от миллиметра до нескольких десятков сантиметров, но встречаются и океанические образования более крупных размеров. В Скриппсовском океанографическом институте (США) находится конкреция массой 57 килограммов, найденная неподалеку от Гавайских островов в Тихом океане. Наиболее круные экспонаты имеют массу около тонны.

Металлический марганец. В России марганец стали выплавлять в первой четверти 19 в. в виде сплава с железом – ферромарганца. Внешне чистый марганец похож на железо, однако отличается от него большей твердостью и хрупкостью. Это серебристо-белый металл, приобретающий серый цвет от примеси углерода. Плотность марганца – 7200 кг/м 3 – близка к плотности железа, однако температура плавления его существенно ниже, чем у железа, и составляет 1247° С. Марганец в слитках в сухом воздухе покрывается слоем оксида, предохраняющим от дальнейшего окисления; во влажном воздухе окисление идет в объеме. В мелкораздробленном состоянии марганец окисляется легко, а при некоторых условиях становится пирофорным (самовоспламеняющимся на воздухе). Вообще реакционная способность металлического марганца существенно зависит от его чистоты. Так 99,9%-ый марганец практически не взаимодействует с водой и медленно реагирует с водяным паром, тогда как металл, загрязненный примесями углерода, кислорода или азота, медленно взаимодействует с водой уже при комнатной температуре и быстро с горячей:

Mn + 2H 2 O = Mn(OH) 2 + H 2 .

Марганец легко растворяется в разбавленных кислотах, но пассивируется холодной концентрированной H 2 SO 4:

Mn + H 2 SO 4 (разб.) = MnSO 4 + H 2 .

С хлором, бромом и иодом марганец реагирует с образованием дигалогенидов:

Mn + Hal 2 = MnHal 2 , где Hal = Cl, Br, I.

При повышенных температурах марганец реагирует также с азотом, углеродом, бором, фосфором, кремнием. Например, при температуре 1200° С марганец сгорает в азоте:

3Mn + N 2 = Mn 3 N 2 (с примесью Mn 5 N 2).

Металлический марганец имеет четыре модификации: a-Mn (при Т Т = 1100° C), d-Mn (при Т > 1137° C). В элементарной ячейке кристаллической решетки альфа-марганца содержится 58 атомов, поэтому, по образному выражению замечательного кристаллохимика профессора Московского Университета Г.Б.Бокия, эта модификация «большое чудо природы».

Известно несколько промышленных способов получения металлического марганца.

Восстановление углем или алюминием в тиглях из MgO или CaO в электрических печах. Процесс служит, главным образом, для получения ферромарганца путем восстановления смеси оксидов железа и марганца при 1000–1100° C:

3Mn 3 O 4 + 8Al = 9Mn + 4Al 2 O 3 .

Этим же способом металлический марганец можно получить в лаборатории, поджигая смесь оксида марганца и порошка алюминия с помощью магниевой ленты

Восстановление безводных галогенидов марганца(II) натрием, магнием или водородом применяется для получения кристаллов марганца.

Наиболее чистый марганец (99,98%) получают электролизом растворов MnSO 4 в присутствии (NH 4) 2 SO 4 при pH 8-8,5, при этом в процессе электролиза выделяется гамма-форма металла. Для очистки марганца от газовых примесей применяют двойную перегонку в высоком вакууме с последующей переплавкой в аргоне и закаливанием. Первое место в мире по производству и экспорту металлического марганца (чистоты 99,9%) занимает ЮАР. К концу 20 в. объем выплавки в этой стране составил 35 тысяч тонн в год, то есть примерно 42% от всего мирового производства. На мировом рынке цена на металлический марганец колеблется от 1500 до 3000 американских долл. за тонну в зависимости от чистоты металла.

Соединения марганца.

Марганец образует огромное число различных соединений, в которых он содержится в различных степенях окисления от 0 до +7, однако практический интерес представляют вещества, где марганец двух-, четырех- и семивалентен.

Оксид марганца (II ) – порошок от серо-зеленого до травянисто-зеленого цвета. Его получают либо прокаливанием карбоната марганца (II) в атмосфере инертного газа, либо частичным восстановлением MnO 2 водородом. В мелкоизмельченном состоянии легко окисляется. В природе изредка встречается в виде минерала манганозита.Является катализатором некоторых промышленно важных реакций дегидрирования органических соединений.

Хлорид марганца (II ) – в безводном состоянии представляет собой листочки светло-розового света и получается при обработке марганца, его оксида или карбоната сухим хлороводородом:

MnCO 3 + 2HCl = MnCl 2 + CO 2 + H 2 O .

Тетрагидрат хлорида марганца(II) удобно получать растворением карбоната марганца(II) в соляной кислоте и упариванием образовавшегося раствора. Безводный MnCl 2 весьма гигроскопичен.

Сульфат марганца (II ) – в безводном состоянии практически не имеющий цвета порошок, горький на вкус и получающийся при дегидратации соответствующих кристаллогидратов (MnSO 4 ·nH 2 O, где n = 1,4,5,7). Гептагидрат сульфата марганца иногда встречается в природе в виде минерала миллардита и устойчив при температуре ниже 9° C. При комнатной температуре устойчив MnSO 4 ·5H 2 O, называемый марганцевым купоросом. В промышленности сульфат марганца получают растворением пиролюзита в горячей концентрированной серной кислоте:

2MnO 2 + 2H 2 SO 4 = 2MnSO 4 + O 2 + 2H 2 O.

или прокаливанием MnO 2 с безводным FeSO 4:

4MnO 2 + 4FeSO 4 = 4MnSO 4 + 2Fe 2 O 3 + O 2 .

Cоли двухвалентного марганца каталитически действуют на протекание некоторых окислительных процессов, особенно происходящих под действием атмосферного кислорода, на этом основано их применение в качестве сиккативов – веществ, которые будучи растворенными в льняном масле, ускоряют его окисление кислородом воздуха и, тем самым, способствуют более быстрому высыханию. Льняное масло, содержащее сиккатив, называют олифой. В качестве сиккативов применяются некоторые органические соли марганца.

Из соединений марганца(IV) наибольшее значение имеет диоксид марганца, который является важнейшим минералом марганца. Различают несколько форм природного диоксида марганца: пиролюзит, рамсделит, псиломелан и криптомелан.

Диоксид марганца в лаборатории можно получить прокаливанием на воздухе Mn(NO 3) 2:

Mn(NO 3) 2 = MnO 2 + 2NO 2 ;

окислением соединений марганца(II) в щелочной среде хлором, гипохлоритом натрия:

Mn(OH) 2 + Cl 2 +2KOH = MnO 2 + 2KCl + 2H 2 O

Mn(OH) 2 + NaOCl = MnO 2 + NaCl + H 2 O.

Диоксид марганца представляет собой черный порошок амфотерного характера, проявляющий как окислительные, так и восстановительные свойства:

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O

MnO 2 + Cl 2 + 4KOH = K 2 MnO 4 + 2KCl + 2H 2 O.

Диоксид марганца, введенный в состав стекла, уничтожает зеленую окраску, обусловленную силикатом железа и придает стеклу розовый цвет (или черный, если MnO 2 добавлено много). Тонкодисперсный порошок диоксида марганца обладает адсорбирующими свойствами: поглощает хлор, соли бария, радия и некоторых других металлов.

Несмотря на огромную значимость пиролюзита, в быту гораздо чаще приходится встречаться с веществом, в котором марганец семивалентен, – перманганатом калия («марганцовкой»), получившим распространение благодаря его ярко выраженным антисептическим свойствам. Сейчас перманганат калия получают электролитическим окислением растворов манганата (VI) калия. Это соединение представляет собой кристаллы пурпурно-красного цвета, устойчивые на воздухе и умеренно растворимые в воде. Однако его растворы в воде быстро разлагаются на свету и медленно в темноте с выделением кислорода. Перманганат калия – сильный окислитель. Вот некоторые примеры его окислительной активности:

2KMnO 4 + 10HCl + 3H 2 SO 4 = 2MnSO 4 + 5Cl 2 + K 2 SO 4 + 8H 2 O

2KMnO 4 + 5H 2 O 2 + 3H 2 SO 4 = 2MnSO 4 + 5O 2 + 8H 2 O

8KMnO 4 + 5PH 3 + 12 H 2 SO 4 = 8MnSO 4 + 5H 3 PO 4 + 4K 2 SO 4 + 12H 2 O.

Перманганат калия широко применяется в медицине, ветеринарии и лабораторной практике.

Перманганат калия – соль марганцевой кислоты HMnO 4 , существующей только в растворе с максимальной концентрацией около 20%. Цвет ее растворов подобен цвету раствора KMnO 4 . Марганцевая кислота принадлежит к числу наиболее сильных кислот. Реакция образования марганцевой кислоты при действии диоксида свинца или висмутата натрия на соли марганца(II) имеет значение в аналитической химии, так как благодаря возникающей интенсивной розовой окраске, можно открыть даже следы марганца.

Оксид марганца(VII) Mn 2 O 7 – марганцевый ангидрид представляет собой зелено-бурое тяжелое масло, получающееся при действии концентрированной серной кислоты на твердый перманганат калия:

2KMnO 4 + H 2 SO 4 = Mn 2 O 7 + K 2 SO 4 + H 2 O.

Это вещество – чрезвычайно сильный окислитель, взрывается при ударе или нагревании. Многие вещества, такие как сера, фосфор, древесная стружка, спирт, при малейшем соприкосновении с ним воспламеняются. При растворении в большом количестве воды образует марганцевую кислоту.

Применение марганца в металлургии. Марганец необходим в производстве стали, и сегодня ему нет эффективной его замены. С введением марганца в ванну с расплавом, он выполняет несколько функций. При раскислении и рафинировании стали марганец восстанавливает оксиды железа, превращаясь в оксид марганца, который устраняется в виде шлака. Марганец взаимодействует с серой, и образовавшиеся сульфиды также переходят в шлак. Алюминий и кремний, хотя и служат раскислителями наряду с марганцем, не способны выполнять функцию десульфуризации. Введение элемента № 25 вызывает замедление скорости роста зерна при нагреве, что приводит к получению мелкозернистой стали. Известно также, что алюминий и кремний, напротив, ускоряют рост зерен.

Вводить марганец в сталь в процессе плавки можно при использовании ферросплавов. Еще в 19 в. металлурги научились выплавлять зеркальный чугун, содержащий 5–20% марганца и 3,5–5,5% углерода. Пионером в этой области стал английский металлург Генри Бессемер . Зеркальный чугун, подобно чистому марганцу, обладает свойством удалять из расплавленной стали кислород и серу. В те времена зеркальный чугун получали в доменной печи путем восстановления содержащих марганец шпатовых железняков, ввозимых из Рейнской Пруссии – из Штальберга.

Бессемер приветствовал дальнейшее развитие производства марганцевых сплавов, и под его руководством Гендерсон организовал в 1863 на заводе Феникс в Глазго производство ферромарганца – сплава, содержащего 25–35% марганца. Ферромарганец обладал преимуществами перед зеркальным чугуном при производстве стали, так как придавал ей большую вязкость и пластичность. Наиболее экономически выгодный способ производства ферромарганца – выплавка в доменной печи.

Несмотря на то, что получение ферромарганца Гендерсоном было технически прогрессивным процессом, этот сплав долгое время не находил применения из-за трудностей, возникающих при выплавке. Промышленная выплавка ферромарганца в России началась в 1876 в доменных печах Нижне-Тагильского завода. Русский металлург А.П.Аносов еще в 1841 в своем труде О булатах описал добавление ферромарганца в сталь. Кроме ферромарганца в металлургии широкое применение находит силикомарганец (15–20% Mn, около 10% Si и меньше 5% С).

В 1878 девятнадцатилетний шеффилдский металлург Роберт Гадфилд приступил к изучению сплавов железа с другими металлами и в 1882 выплавил сталь с 12%-ым содержанием марганца. В 1883 Гадфилду был выдан первый британский патент на марганцовистую сталь. Оказалось, что закалка стали Гадфилда в воде придает ей такие замечательные свойства, как износостойкость и увеличение твердости при длительном действии нагрузок. Эти свойства сразу нашли применение при изготовлении железнодорожных рельсов, гусениц тракторов, сейфов, замков и многих других изделий.

В технике широко применяются тройные сплавы марганец-медь-никель – манганины. Они обладают большим электрическим сопротивлением, не зависящим от температуры, но зависящим от давления. Поэтому манганины используются при изготовлении электрических манометров. Действительно, обычным манометром нельзя измерить давление в 10 тыс. атмосфер, это можно сделать электрическим манометром, заранее зная зависимость сопротивления манганина от давления.

Интересны сплавы марганца с медью (особенно 70% Mn и 30% Cu), они могут поглощать энергию колебаний, это находит применение там, где необходимо уменьшить вредные производственные шумы.

Как показал Гейслер в 1898, марганец образует сплавы с некоторыми металлами, например с алюминием, сурьмой, оловом, медью, отличающиеся способностью намагничиваться, хотя они и не содержат ферромагнитных компонентов. Это свойство связано с наличием в таких сплавах интерметаллических соединений. По имени первооткрывателя подобные материалы называются сплавами Гейслера.

Биологическая роль марганца.

Марганец относится к важнейшим из жизненно необходимых микроэлементов и участвует в регуляции важнейших биохимических процессов. Установлено, что небольшие количества элемента № 25 есть во всех живых организмах. Марганец участвует в основных нейрохимических процессах в центральной нервной системе, в образовании костной и соединительной тканей, регуляции жирового и углеводного обмена, обмене витаминов С, Е, холина и витаминов группы В.

В крови человека и большинства животных содержание марганца составляет около 0,02 мг/л. Суточная потребность взрослого организма составляет 3–5 мг Mn. Марганец оказывает влияние на процессы кроветворения и иммунную защиту организма. Укушенного каракуртом (ядовитым среднеазиатским пауком) человека можно спасти, если ввести ему внутривенно раствор сульфата марганца.

Избыточное накопление марганца в организме сказывается, в первую очередь, на функционировании центральной нервной системы. Это проявляется в утомляемости, сонливости, ухудшении функций памяти и наблюдается в основном у рабочих, связанных с производством марганца и его сплавов.

Дефицит марганца – одно из распространенных отклонений в элементном обмене современного человека. Это связано со значительным снижением потребления богатых марганцем продуктов (грубая растительная пища, зелень), увеличением количества фосфатов в организме (лимонады, консервы и др.), ухудшением экологической ситуации в крупных городах и психо-эмоциональной перенапряженностью. Коррекция дефицита марганца оказывает положительное влияние на состояние здоровья человека.

Юрий Крутяков

Соли марганца (II)

Химические свойства

Получение

Гидроксид марганца (II)

Химические свойства

Оксид марганца (II) принадлежит к основным оксидам, обладает всеми их свойствами. Ему соответствует нестойкий гидроксид Mn(OH) 2 .

Гидроксид марганца (II) - Mn(OH) 2 – нерастворимое в воде вещество светло-розового цвета.

Основной способ получения – щелочная обработка солей марганца (II):

MnSO 4 + 2NaOH → Mn(OH) 2 ↓ + Na 2 SO 4

На воздухе окисляется до гидроксида марганца (IV):

2Mn(OH) 2 ↓ + O 2 + 2H 2 O → 2Mn(OH) 4 ↓

Проявляет все свойства нерастворимых в воде оснований.

Все соли марганца (II) в окислительно-восстановительных реакциях, протекающих в растворах, являются восстановителями:

3Mn(NO 3) 2 + 2KMnO 4 + 2H 2 O → 5MnO 2 + 4HNO 3 + 2KNO 3

Соли марганца (II) не гидролизуются, образуя прочные аквакомплексы:

Mn 2+ + 6H 2 O → 2+

MnCl 2 + 6H 2 O → Cl 2

Соли марганца (II) образуют комплексы.

Mn(CN) 2 – нерастворимое соединение белого цвета, за счет комплексообразования растворяется в присутствии KCN:

4KCN + Mn(CN) 2 = K 4 гексоцианоманганат калия

Аналогично:

4KF + MnF 2 = K 4

2KCl + MnCl 2 = K 2

Соединения марганца (III)

Mn 2 O 3 – амфотерный оксид , с преобладанием основных свойств.

Mn 2 O 3 + 6HF = 2MnF 3 + 3H 2 O

Mn +3 2 O 3 + NaOH = 2NaMnO 2 + H 2 O (t)

Mn(OH) 3 – гидроксид Mn 3+ - амфотерное соединение, с преобладанием основных свойств:

Mn(OH) 3 ↔ HMnO 2

Соединения марганца (IV)

К основным соединениям четырехвалентного марганца относятся оксид марганца (IV) MnO 2 , а также марганцеватистая кислота H 2 MnO 3 – очень неустойчивая, легко разлагающаяся на оксид марганца (IV) и воду.

Самым прочным соединением марганца (IV) является нерастворимый в воде оксид темно-бурого цвета. Это амфотерное соединение, но соответствующие свойства выражены крайне слабо.

амфотерность
MnO 2 + 4HF = MnF 4 + 2H 2 O

MnO 2 + 2NaOH = Na 2 MnO 3 + H 2 O

MnO 2 может проявлять в ОВ-реакциях в зависимости от природы партнера как окислительные, так и восстановительные свойства (окислительно-восстановительная двойственность).

Гораздо чаще используют оксид марганца (IV) в качестве окислителя, проводя реакции в кислой среде:

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O

В щелочной среде оксид марганца (IV) может быть и восстановителем, превращаясь в соединения марганца (VI), например, соли марганцовистой кислоты – манганаты:

3MnO 2 + KClO 3 + 6KOH = 3K 2 MnO 4 + KCl + 3H 2 O

Влияние рН на ОВ-реакции MnO 2

Соединения марганца (VI)

MnO 3 – оксид , обладает кислотными свойствами.

H 2 MnO 4 – марганцовистая кислота – существует только в растворе.



Соли этой кислоты – манганаты .

Манганаты могут быть получены прокаливанием сухих перманганатов:

Манганаты устойчивы в сильнощелочной среде, в нейтральной среде протекает реакция диспропорционирования:

3Na 2 MnO 4 + 2H 2 O → 2NaMnO 4 + MnO 2 + 4NaOH

Соединения марганца (VII)

Высшей степени окисления марганца +7 соответствует кислотный оксид Mn 2 O 7 , марганцевая кислота HMnO 4 и ее соли – перманганаты .

Соединения марганца (VII) – сильные окислители. Mn 2 O 7 – зеленовато-бурая маслянистая жидкость, при соприкосновении с которой спирты и эфиры воспламеняются. Оксиду Mn (VII) соответствует марганцевая кислота HMnO 4 . Она существует только в растворах, но считается одной из самых сильных (α – 100%). Максимально возможная концентрация HMnO 4 в растворе – 20%. Соли HMnO 4 – перманганаты – сильнейшие окислители; в водных растворах, как и сама кислота, имеют малиновую окраску.

В окислительно-восстановительных реакциях перманганаты являются сильными окислителями. В зависимости от реакции среды они восстанавливаются либо до солей двухвалентного марганца (в кислой среде), оксида марганца (IV) (в нейтральной) или соединений марганца (VI) – манганатов – (в щелочной). Очевидно, что в кислой среде окислительные способности Mn +7 выражены наиболее ярко.

2KMnO 4 + 5Na 2 SO 3 + 3H 2 SO 4 → 2MnSO 4 + 5Na 2 SO 4 + K 2 SO 4 + 3H 2 O

2KMnO 4 + 3Na 2 SO 3 + H 2 O → 2MnO 2 + 3Na 2 SO 4 + 2KOH

2KMnO 4 + Na 2 SO 3 + 2KOH → 2K 2 MnO 4 + Na 2 SO 4 + H 2 O

Перманганаты как в кислой, так и в щелочной средах окисляют органические вещества:

2KMnO 4 + 3H 2 SO 4 + 5C 2 H 5 OH → 2MnSO 4 + K 2 SO 4 + 5CH 3 COH + 8H 2 O

спирт альдегид

4KMnO 4 + 2NaOH + C 2 H 5 OH → MnO 2 ↓ + 3CH 3 COH + 2K 2 MnO 4 +

Na 2 MnO 4 + 4H 2 O

При нагревании перманганат калия разлагается (эта реакция применяется для получения кислорода в лабораторных условиях):

2KMnO 4 K 2 MnO 4 + MnO 2 + O 2

Таким образом, для марганца характеры те же зависимости: при переходе от низшей степени окисления к высшей нарастают кислотные свойства кислородных соединений, а в ОВ-реакциях восстановительные свойства сменяются окислительными.

Для организма перманганаты ядовиты вследствие сильных окислительных свойств.

При отравлениях перманганатами в качестве антидота используют пероксид водорода в уксуснокислой среде:

2KMnO 4 + 5H 2 O 2 + 6CH 3 COOH → 2(CH 3 COO) 2 Mn + 2CH 3 COOK + 5O 2 + 8H 2 O

Раствор KMnO 4 является прижигающим и бактерицидным средством для обработки поверхности кожи и слизистых оболочек. Сильные окислительные свойства KMnO 4 в кислой среде лежат в основе аналитического метода перманганатометрии, используемого в клиническом анализе для определения окисляемости воды, мочевой кислоты в моче.

Организм человека содержит около 12 мг Mn в составе различных соединений, причем 43% сосредоточено в костной ткани. Он оказывает влияние на кроветворение, формирование костной ткани, рост, размножение и некоторые другие функции организма.

Тема: D-элементы VIII группы

Ключевые слова: d-элементы, железо, кобальт, никель, триады – d-элементов, семейство железа, феромагнитные соединения, комплексооразующая способность, пассивация на холоду кислотами, карбонилы железа, кристаллогидраты, желтая и красная кравяные соли, ферраты, соль Мора, железная кислота.

Особенность VIII В-группы состоит в том, что она объединяет 3 триады d-элементов больших периодов, не имеющих электронных аналогов в малых периодах.

Элементы первой триады – Fe, Co, Ni – называют семейством железа. Элементы второй и третьей триад, то есть Ru (рутений), Rh (родий), Pd (палладий), Os (осмий), Ir (иридий), Pt (платина), именуются платиновыми металлами.

Атомы элементов семейства железа в отличие от атомов платиновых металлов не имеют свободного f-подуровня.

Этот факт обуславливает химические особенности элементов семейства железа.

Платиновые металлы, очень сходные по свойствам и трудноотделимые друг от друга, резко отличаются от металлов семейства железа и никогда не встречаются вместе с ними в литосфере.

У элементов VIII В-группы почти полностью достраивается d-подуровень предвнешнего уровня. Однако не все электроны d-подуровня участвуют в образовании химических связей. Только около 10 лет назад было получено соединение железа со степенью окисления +8, чаще же в сложных соединениях для железа характерны степени окисления +3 и +2; у Со +3, а у Ni +2. Для металлов VIII В-группы характерны высокие плотности и температуры плавления. Fe, Co, Ni – ферромагниты; все элементы VIII В-группы хорошие комплексообразователи.

Элементы семейства железа – металлы со средней химической активностью. В ряду стандартных электродных потенциалов расположены левее водорода. Платиновые металлы расположены в конце ряда стандартных электродных потенциалов и отличаются низкой химической активностью.

Платиновые металлы используются в приборостроении, как катализаторы в оргсинтезе и для получения коррозионно-устойчивых сплавов.

Элементы семейства железа расположены в четвертом периоде периодической системы химических элементов. Fe, Co – серебристо-белые металлы, Ni имеет желтовато-белый цвет.

Для железа и кобальта в сложных веществах наиболее характерны степени окисления +2 и +3, а для никеля +2. Подобно элементам подгруппы марганца, способны образовывать соединения со степенью окисления 0 (карбонилы):