Медиаторы цнс. Медиаторы и модуляторы Основные медиаторы нервной системы позвоночных

Выделение нейромедиаторов пресинаптическими окончаниями нейронов напоминает секрецию эндокринных желёз, выделяющих в кровь свои гормоны. Но гормоны обычно действуют на клетки, находящиеся на удалении от самой железы, тогда как мишенями для нейротрансмиттеров являются лишь постсинаптические нейроны. Поэтому у любого медиатора очень короткий путь до цели, а его действие оказывается быстрым и точным. Точности способствует наличие активных зон – специализированных областей пресинаптической мембраны, где обычно происходит выделение нейротрансмиттера. Если же медиатор выделяется через неспецифические участки мембраны, то точность его действия уменьшается, а само действие замедляется. Такая картина наблюдается, например, в синапсах, образованных между нейронами вегетативной нервной системы и гладкими мышцами.

Но иногда действие медиатора не ограничено только соседней клеткой, и в таких случаях он действует как модулятор с достаточно широким спектром деятельности. А отдельные нейроны выделяют свой продукт в кровь, и тогда он действует уже как нейрогормон. Несмотря на то, что по своей химической природе многие нейромедиаторы существенно отличаются, результат их влияния на постсинаптическую клетку (т.е. возбуждение или торможение) определяется не химической структурой, а типом ионных каналов, которыми медиатор управляет с помощью постсинаптических рецепторов.

Существует несколько критериев, по которым то или иное вещество можно определить как нейромедиатор:

1. Синтез этого вещества происходит в нервных клетках.

2. Синтезированные вещества накапливаются в пресинаптических окончаниях, а после выделения оттуда оказывают специфическое действие на постсинаптический нейрон или эффектор.

3. При искусственном введении этого вещества обнаруживается такой же эффект, как и после выделении его естественным способом.

4. Существует специфический механизм удаления медиатора с места его действия.

Некоторые исследователи считают, что ток кальция в пресинаптическое окончание, приводящий к выделению медиатора, тоже следует рассматривать в качестве одного из критериев, по которым определяют принадлежность вещества к нейромедиаторам. И ещё одним доказательством можно считать возможность блокировать эффект предполагаемого медиатора специально подобранными фармакологическими веществами. Далеко не всегда удаётся экспериментально подтвердить существование сразу всех этих критериев.

В зависимости от химической структуры различают низкомолекулярные и пептидные нейротрансмиттеры (Рис. 6.1).

К низкомолекулярным медиаторам относятся ацетилхолин, биогенные амины, гистамин, аминокислоты и их производные. В списке медиаторов белковой природы значится свыше 50 коротких пептидов. Нейроны, выделяющие определённый медиатор, а также синапсы, в которых он используется и постсинаптические рецепторы для него принято называть …-эргическими, где вместо многоточия ставится название конкретного медиатора: например, ГАМК-эргические нейроны, адренэргические синапсы, холинорецепторы, пептидэргические структуры и т. п.

Вещества, оказывающие на постсинаптические рецепторы такое же действие, как и сам медиатор, называют агонистами, а вещества, связывающиеся с постсинаптическими рецепторами и блокирующие их без присущего медиатору действия, – антагонистами. Эти термины обычно применяются для характеристики каких-либо фармакологических веществ: так, например, введение агонистов приводит к обычной для медиатора или даже усиленной деятельности синапса, а введение антагониста блокирует синапс так, что медиатор не может вызвать привычный для него эффект.

6.2. Синтез нейромедиаторов

Для каждого нейротрансмиттера существуют свои механизмы синтеза. Ацетилхолин, например, образуется с помощью фермента ацетилтрансферазы из ацетилкоэнзима А, встречающегося только в нервных клетках, и холина, захваченного нейроном из крови. Биогенные амины синтезируются из аминокислоты тирозина в следующем порядке: тирозин Þ L-ДОФА (диоксифенилаланин) Þ дофамин Þ норадреналин Þ адреналин, причём каждое преобразование обеспечивается специфическим ферментом. Серотонин получается при ферментативном окислении и декарбоксилировании аминокислоты триптофана.

ГАМК появляется при декарбоксилировании глутаминовой кислоты, а глицин и глутамат представляют собой две из двадцати имеющихся в организме аминокислот, однако, несмотря на их существование почти во всех клетках, в качестве медиаторов эти аминокислоты используются отнюдь не всеми нейронами. Следует различать встречающиеся в самых разных клетках чисто метаболические глицин или глутамат от сберегаемых в синаптических пузырьках – лишь в последнем случае аминокислоты применяются в качестве медиаторов.

Ферменты для синтеза низкомолекулярных нейротрансмиттеров находятся, как правило, в цитоплазме, а синтез происходит на свободных полисомах. Образовавшиеся молекулы медиатора упаковываются в синаптические пузырьки и медленным аксоплазматическим транспортом доставляются в окончание аксона. Но и в самом окончании может происходить синтез низкомолекулярных медиаторов.

Пептидные нейротрансмиттеры образуются только в клеточном теле из молекул белка-предшественника. Их синтез происходит в эндоплазматическом ретикулуме, дальнейшие преобразования – в аппарате Гольджи. Оттуда молекулы медиатора в секреторных пузырьках попадают в нервное окончание с помощью быстрого аксонального транспорта. В синтезе пептидных медиаторов участвуют ферменты – серинпротеазы. Пептиды могут выполнять роль как возбуждающих, так и тормозных медиаторов. Некоторые из них, как, например, гастрин, секретин, ангиотензин, вазопрессин и т. п. раньше были известны как гормоны, действующие вне мозга (в желудочно-кишечном тракте, почках). Однако, если они действуют непосредственно в месте своего выделения, их тоже рассматривают в качестве нейротрансмиттеров.

Для того, чтобы молекулы медиатора попали в синаптическую щель, синаптический пузырёк должен сначала слиться с пресинаптической мембраной в её активной зоне. После этого в пресинаптической мембране образуется увеличивающееся примерно до 50 нм в диаметре отверстие, через которое всё содержимое пузырька опорожняется в щель (Рис. 6.2). Этот процесс называется экзоцитозом. Когда необходимости в выделении медиатора нет, большая часть синаптических пузырьков бывает прикреплена к цитоскелету специальным белком (он называется синапсин), который по своим свойствам напоминает сократительный мышечный белок актин.

Когда нейрон возбуждается и потенциал действия достигает пресинаптического окончания, в нём открываются потенциалзависимые каналы для ионов кальция. Их плотность особенно высока в области активных зон – около 1500/ мкм2. В большинстве нейронов ток ионов кальция в нервное окончание наблюдается и при мембранном потенциале покоя, что обусловлено электрохимическим градиентом. Но во время деполяризации мембраны ток кальция увеличивается, а на вершине пика потенциала действия он становится максимальным и приблизительно через 0,2 мс после этого происходит выделение медиатора.

Роль ионов кальция состоит в том, чтобы преобразовать вызванную возбуждением нейрона деполяризацию в неэлектрическую активность – выделение медиатора. Без входящего тока ионов кальция нейрон фактически лишается своей выходной активности. Кальций нужен для взаимодействия белков мембраны синаптических пузырьков – синаптотагмина и синаптобревина с белками плазматической мембраны аксона – синтаксином и неурексином. В результате взаимодействия этих белков синаптические пузырьки перемещаются к активным зонам и прикрепляются к плазматической мембране. Только после этого начинается экзоцитоз (Рис. 6.3).

Некоторые нейротоксины, например ботулинический, повреждают синаптобревин, что препятствует выделению медиатора – о тяжелых последствиях ботулизма уже говорилось в предыдущей главе. Ещё один нейротоксин – яд пауков рода Latrodectus связывает другой белок -неурексин, что приводит к быстрому опустошению пузырьков с медиатором. После укуса каракурта, одного из представителей этого рода пауков, у человека немеют ноги, его мучает удушье, мышцы живота становятся твёрдыми, как доска, возникает нестерпимая боль в животе и груди, наступает сильное психическое возбуждение, страх смерти, а иногда и сама смерть. Американский родственник каракурта – чёрная вдова (black widow) пользуется тем же ядом, что и каракурт, уступая, впрочем, каракурту в убойной силе.

Небольшое количество медиатора выделяется и без возбуждения нейрона, происходит это малыми порциями – квантами, что было впервые обнаружено в нервно-мышечном синапсе. В результате выделения одного кванта на мембране концевой пластинки возникает миниатюрный подпороговый потенциал величиной около 0,5 – 1 мВ. Выяснено, что для такой деполяризации концевой пластинки в ней надо открыть минимум 2000 каналов, а чтобы открыть столько каналов, необходимо приблизительно 5000 молекул ацетилхолина, следовательно квант представляет собой порцию медиатора, содержащуюся всего лишь в одном синаптическом пузырьке. Для возникновения нормального потенциала концевой пластинки требуется освободить около 150 квантов медиатора, но за очень короткое время – не более 2 мс.

В большинстве синапсов центральной нервной системы после вхождения ионов кальция в пресинаптическое окончание выделяется от 1 до 10 квантов медиатора, поэтому одиночные потенциалы действия практически всегда оказываются подпороговыми. Количество выделяемого медиатора увеличивается, когда к пресинаптическому окончанию поступает серия высокочастотных потенциалов действия. В этом случае растёт и амплитуда постсинаптического потенциала, т. е. происходит временная суммация.

После высокочастотной стимуляции пресинаптического окончания наблюдается повышение эффективности синаптической передачи в течение нескольких минут, а у отдельных нейронов ещё дольше – до часа, когда в ответ на одиночный потенциал действия медитора выделяется больше, чем обычно. Это явление получило название посттетанической потенциации. Объясняется оно тем, что при высокочастотной или тетанической стимуляции растёт концентрация свободного кальция в нервном окончании и им насыщаются буферные системы, прежде всего эндоплазматический ретикулум и митохондрии. В связи с этим активируется специализированный фермент: кальций-кальмодулин-зависимая протеинкиназа. Этот фермент вызывает повышенное отхождение синаптических пузырьков от цитоскелета. Освободившиеся синаптические пузырьки направляются к пресинаптической мембране и сливаются с ней, после этого происходит экзоцитоз.

Повышение эффективности синаптической передачи является одним из механизмов образования памяти, а накопление ионов кальция в пресинаптическом окончании можно рассматривать как один из способов хранения информации о предшествующей высокой активности нейрона.

Представление о рецепторах сформулировал ещё в конце XIX века знаменитый германский учёный Пауль Эрлих (Erlich P.): " Химические субстанции влияют только на те элементы ткани, с которыми они могут связаться. Эта связь должна быть специфичной, т. е. химические группы должны соответствовать друг другу, как ключ и замок". Постсинаптические рецепторы представляют собой трансмембранные белки, у которых наружная часть узнаёт и связывает молекулы медиатора. Вместе с тем, их можно рассматривать ещё и как эффекторы, управляющие открытием и закрытием хемозависимых ионных каналов. Есть два принципиально отличающихся способа управления каналами: ионотропный и метаботропный.

При ионотропном управлении рецептор и канал представляют собой единую макромолекулу. Если к рецептору присоединяется медиатор, то конформация всей молекулы изменяется так, что в центре канала образуется пора и через неё проходят ионы. При метаботропном управлении рецепторы не связаны с каналом напрямую и поэтому присоединение медиатора и открытие канала разделены несколькими промежуточными этапами, в которых участвуют вторичные посредники. Первичным посредником является сам медиатор, который при метаботропном управлении присоединяется к рецептору, действующему на несколько молекул G-белка, который представляет собой длинную извитую аминокислотную цепь, пронизывающие клеточную мембрану семью своими петлями. Известно около дюжины разновидностей G-белков, все они связаны с нуклеотидом гуанозинтрифосфатом (ГТФ). Присоединение нейротрансмиттера к рецептору вызывает сразу в нескольких связанных с ним молекулах G-белка, превращение бедного энергией предшественника – гуанозиндифосфата (ГДФ) в ГТФ.

Такого рода преобразования, обусловленные присоединением остатка фосфорной кислоты, называются фосфорилированием. Вновь образующаяся связь богата энергией, поэтому молекулы G-белка, в которых произошло превращение ГДФ в ГТФ, становятся активированными (Рис. 6.4). Активация белковых молекул может проявляться в изменении их конформации, а у ферментов она обнаруживается в повышении сродства к субстрату, на который действует фермент.

Приобретённая активность у G-белков направлена на стимуляцию или подавление активности (в зависимости от типа G-белка) некоторых ферментов (аденилатциклазы, гуанилатциклазы, фосфолипаз А 2 и С), которые в случае активации вызывают образование вторичных посредников. Конкретный ход дальнейших событий зависит от типа преобразующего сигнал белка. В случае прямого управления ионными каналами активированная молекула G-белка перемещается по внутренней поверхности мембраны к ближайшему ионному каналу и присоединяется к нему, что приводит к открытию этого канала. При непрямом управлении активированный G-белок использует одну из систем вторичных посредников, которые либо управляют ионными каналами, либо изменяют характер метаболизма – обменных процессов в клетке, либо вызывают экспрессию определённых генов, за которой следует синтез новых белков, что, в конечном счёте, тоже приводит к изменению характера обменных процессов. Из вторичных посредников лучше всего изучен циклический аденозинмонофосфат (цАМФ), образование которого осуществляется в несколько этапов (Рис. 6.5).

Активированный G-белок действует на интегральный белок клеточной мембраны – аденилатциклазу, которая является ферментом. Активированная аденилатциклаза вызывает превращение молекул аденозинтрифосфата (АТФ) в циклический аденозинмонофосфат (цАМФ), причём одна молекула аденилатциклазы вызывает образование множества молекул цАМФ. Молекулы цАМФ могут свободно диффундировать в цитоплазме, становясь, таким образом, переносчиками полученного сигнала внутри клетки. Там они находят ферменты – цАМФ-зависимые протеинкиназы и активирует их. Протеинкиназы стимулируют определённые биохимические реакции – характер обменных процессов направленно изменяется.

Следует обратить внимание на усиление слабого синаптического сигнала при такой последовательности событий. Присоединение одной молекулы нейротрансмиттера к рецептору сопровождается активацией нескольких молекул G-белков. Каждая молекула G-белка может активировать несколько молекул аденилатциклазы. Каждая молекула аденилатциклазы вызывает образование множества молекул цАМФ. По такому же принципу, но с участием других типов G-белка активируются другие системы известных вторичных посредников (Рис. 6.6).

Некоторые вторичные посредники могут диффундировать через мембрану клетки и оказывать действие на соседние нейроны, в том числе и на пресинаптический (Рис. 6.7).

Таким, образом, ионотропное управление является непосредственным: лишь только медиатор присоединится к рецептору – открывается ионный канал, причём всё происходит очень быстро, в течение тысячных долей секунды. При метаботропном управлении ответ на присоединение медиатора непрямой, он требует участия преобразующих белков и включает активацию вторичных посредников, а поэтому и появляется значительно позже, чем ионотропный: спустя секунды, а иногда и минуты. Зато при метаботропном управлении обусловленные действием медиатора изменения сохраняются дольше, чем при ионотропном управлении. Ионотропным управлением чаще пользуются низкомолекулярные медиаторы, а нейропептиды чаще активируют системы вторичных посредников, однако эти различия не абсолютны. К ионотропным рецепторам относятся Н-холинорецепторы, один тип рецепторов для ГАМК, два типа рецепторов для глутамата, рецепторы глицина и серотонина. К метаботропным принадлежат рецепторы нейропептидов, М-холинорецепторы, альфа- и бета-адренорецепторы, по одному типу рецепторов для ГАМК, глутамата и серотонина, а также обонятельные рецепторы.

Ещё один вид рецепторов находится не на постсинаптической, а на пресинаптической мембране – это ауторецепторы. Они связаны с G-белком пресинаптической мембраны, их функция состоит в регуляции количества молекул медиатора в синаптической щели. Одни ауторецепторы связываются с медиатором, если его концентрация становится чрезмерной, другие – если недостаточной. После этого меняется интенсивность выделения медиатора из пресинаптического окончания: уменьшается в первом случае и увеличивается – во втором. Ауторецепторы являются важным звеном обратной связи, с помощью которой регулируется стабильность синаптической передачи.

6.5. Удаление медиаторов из синаптической щели

К судьбе выполнившего свою роль в передаче сигнала медиатора применима поговорка: мавр сделал своё дело – мавр должен уйти. Если медиатор останется на постсинаптической мембране, то он помешает передаче новых сигналов. Существует несколько механизмов для устранения использованных молекул медиатора: диффузия, ферментативное расщепление и повторное использование.

Путём диффузии из синаптической щели всегда уходит какая-то часть молекул медиатора, а в некоторых синапсах этот механизм является основным. Ферментативное расщепление представляет собой главный способ удаления ацетилхолина в нервно-мышечном синапсе: этим занимается холинэстераза, прикреплённая по краям складок концевой пластинки. Образующиеся при этом ацетат и холин специальным механизмом захвата возвращаются в пресинаптическое окончание.

Известны два фермента, расщепляющие биогенные амины: моноаминооксидаза (МАО) и катехол-о-метилтрансфераза (КОМТ). Расщепление нейротрансмиттеров белковой природы может происходить под действием внеклеточных пептидаз, хотя обычно такие медиаторы исчезают из синапса медленнее, чем низкомолекулярные, и нередко покидают синапс путём диффузии.

Повторное использование медиаторов основано на специфических для разных нейротрансмиттеров механизмах захвата их молекул как самими нейронами, так и клетками глии, в этом процессе участвуют особые транспортные молекулы. Специфические механизмы повторного использования известны для норадреналина, дофамина, серотонина, глутамата, ГАМК, глицина и холина (но не ацетилхолина). Некоторые психофармакологические вещества блокируют повторное использование медиатора (например, биогенных аминов или ГАМК) и, тем самым, продлевают их действие.

6.6. Отдельные медиаторные системы

Химическая структура важнейших нейромедиаторов представлена на рисунке 6.1.

6.6.1. Ацетилхолин

Образуется с помощью фермента ацетилтрансферазы из ацетилкоэнзима А и холина, который нейроны не синтезируют, а захватывают из синаптической щели или из крови. Это единственный медиатор всех мотонейронов спинного мозга и вегетативных ганглиев, в этих синапсах его действие опосредовано Н-холинорецепторами, а управление каналами прямое, ионотропное. Ацетилхолин выделяется также постганглионарными окончаниями парасимпатического отдела вегетативной нервной системы: здесь он связывается с М-холинорецепторами, т. е. действует метаботропно. В головном мозгу его используют в качестве нейротрансмиттера многочисленные пирамидные клетки коры, действующие на базальные ганглии, например, в хвостатом ядре выделяется примерно 40% от общего количества образующегося в мозгу ацетилхолина. С помощью ацетилхолина миндалины мозга возбуждают клетки коры больших полушарий.

М-холинорецепторы обнаружены во всех отделах мозга (кора, структуры лимбической системы, таламус, ствол), их особенно много в ретикулярной формации. С помощью холинэргических волокон средний мозг связан с другими нейронами верхних отделов ствола, зрительными буграми и корой. Возможно активация именно этих путей обязательна для перехода от сна к бодрствованию, во всяком случае характерные изменения электроэнцефалограммы после приёма ингибиторов холинэстеразы подтверждают такую версию.

При прогрессирующем слабоумии, известном как болезнь Альцгеймера, выявлено снижение активности ацетилтрансферазы в нейронах ядер Мейнерта, расположенных в базальном отделе переднего мозга, непосредственно под полосатым телом. В связи с этим нарушается холинэргическая передача, что рассматривается как важное звено в развитии болезни.

Антагонисты ацетилхолина, как показано в экспериментах на животных, затрудняют образование условных рефлексов и снижают эффективность умственной деятельности. Ингибиторы холинэстеразы приводят к накоплению ацетилхолина, что сопровождается улучшением кратковременной памяти, ускоренным образованием условных рефлексов и лучшим сохранением следов памяти.

Достаточно популярно представление о том, что холинэргические системы мозга крайне необходимы для осуществления его интеллектуальной деятельности и для обеспечения информационного компонента эмоций.

6.6.2. Биогенные амины

Как уже говорилось, биогенные амины синтезируются из тирозина, причём каждый этап синтеза контролирует специальный фермент. Если в клетке есть полный набор таких ферментов, то она будет выделять адреналин и в меньшем количестве его предшественники – норадреналин и дофамин. Например, т.н. хромаффинные клетки мозгового вещества надпочечников выделяют адреналин (80% секреции), норадреналин (18%) и дофамин (2%). Если нет фермента для образования адреналина, то клетка может выделять только норадреналин и дофамин, а если нет и фермента, требующегося для синтеза норадреналина, то единственным выделяемым медиатором будет дофамин, предшественник которого – L-ДОФА в качестве медиатора не используется.

Дофамин, норадреналин и адреналин часто объединяют термином катехоламины. Они управляют метаботропными адренорецепторами, которые есть не только в нервной, но и в других тканях организма. Адренорецепторы подразделяются на альфа -1 и альфа-2, бета-1 и бета-2: физиологические эффекты, вызванные присоединением катехоламинов к разным рецепторам, существенно отличаются. Соотношение разных рецепторов неодинаково у разных клеток-эффекторов. Наряду с адренорецепторами, общими для всех катехоламинов, существуют специфические рецепторы для дофамина, которые обнаружены в центральной нервной системе и в других тканях, например, в гладких мышцах кровеносных сосудов и в сердечной мышце.

Адреналин является главным гормоном мозгового вещества надпочечников, к нему особенно чувствительны бета-рецепторы. Есть сведения и об использовании адреналина некоторыми клетками мозга в качестве медиатора. Норадреналин выделяют постганглионарные нейроны симпатического отдела вегетативной нервной системы, а в центральной нервной системе – отдельные нейроны спинного мозга, мозжечка и коры больших полушарий. Самое большое скопление норадренэргических нейронов представляют собой голубые пятна – ядра мозгового ствола.

Считается, что с активностью этих норадренэргических нейронов связано наступление фазы парадоксального сна, однако только этим их функция не ограничивается. Ростральнее голубых пятен также есть норадренэргические нейроны, чрезмерная активность которых играет ведущую роль в развитии т.н. синдрома паники, сопровождающегося чувством непреодолимого ужаса.

Дофамин синтезируют нейроны среднего мозга и диэнцефальной области, которые образуют три дофаминэргические системы мозга. Это, во-первых, нигростриатная система: она представлена нейронами чёрной субстанции среднего мозга, аксоны которых заканчиваются в хвостатых ядрах и скорлупе. Во-вторых, это мезолимбическая система, сформированная нейронами вентральной покрышки моста, их аксоны иннервируют перегородку, миндалины, часть лобной коры, т. е. структуры лимбической системы мозга. И, в третьих, мезокортикальная система: её нейроны в среднем мозгу, а их аксоны оканчиваются в передней части поясной извилины, глубоких слоях фронтальной коры, энторинальной и пириформной (грушевидной) коре. Наивысшая концентрация дофамина обнаружена в лобной коре.

Дофаминэргические структуры играют видную роль в формировании мотиваций и эмоций, в механизмах удержания внимания и отборе наиболее значимых сигналов, поступающих в центральную нервную систему с периферии. Дегенерация нейронов чёрной субстанции приводит к комплексу двигательных расстройств, который известен как болезнь Паркинсона. Для лечения этой болезни используют предшественник дофамина – L-ДОФА, способный, в отличие от самого дофамина, преодолевать гематоэнцефалический барьер. В некоторых случаях предпринимаются попытки лечить болезнь Паркинсона введением ткани мозгового вещества надпочечников плода в желудочек мозга. Введённые клетки могут сохраняться до года и при этом вырабатывать значительное количество дофамина.

При шизофрении обнаруживается повышенная активность мезолимбической и мезокортикальной систем, что многими рассматривается как один из главных механизмов поражения мозга. В противоположность этому при т.н. большой депрессии приходится применять средства, повышающие концентрацию катехоламинов в синапсах центральной нервной системы. Антидепрессанты помогают многим больным, но, к сожалению, не способны сделать счастливыми здоровых людей, просто переживающих несчастливое время своей жизни.

6.6.3. Серотонин

Этот низкомолекулярный нейромедиатор образуется из аминокислоты триптофана с помощью двух, участвующих в синтезе ферментов. Значительные скопления серотонинэргических нейронов находятся в ядрах шва – тонкой полосе вдоль средней линии каудальной ретикулярной формации. Функция этих нейронов связана с регуляцией уровня внимания и регуляцией цикла сна и бодрствования. Серотонинэргические нейроны взаимодействуют с холинэргическими структурами покрышки моста и норадренэргическими нейронами голубого пятна. Одним из блокаторов серотонинэргических рецепторов является ЛСД, следствием приёма этого психотропного вещества становится беспрепятственный пропуск в сознание таких сенсорных сигналов, которые в норме задерживаются.

6.6.4. Гистамин

Это вещество из группы биогенных аминов синтезируется из аминокислоты гистидина и в самых больших количествах содержится в тучных клетках и базофильных гранулоцитах крови: там гистамин участвует в регуляции различных процессов, в том числе в формировании аллергических реакций немедленного типа. У беспозвоночных это достаточно распространённый медиатор, у человека он используется как нейротрансмиттер в гипоталамусе, где участвует в регуляции эндокринных функций.

6.6.5. Глутамат

Наиболее распространённый возбуждающий нейротрансмиттер головного мозга. Он выделяется аксонами большинства чувствительных нейронов, пирамидными клетками зрительной коры, нейронами ассоциативной коры, образующими проекции на полосатое тело.

Рецепторы для этого медиатора подразделяются на ионотропные и метаботропные. Ионотропные рецепторы глутамата разделяются на два типа, в зависимости от своих агонистов и антагонистов: НМДА (Н-метил-Д-аспартат) и не-НМДА. НМДА рецепторы связаны с катионными каналами, через которые возможен ток ионов натрия, калия и кальция, а каналы не-НМДА рецепторов не пропускают ионы кальция. Входящий через каналы НМДА рецепторов кальций активирует каскад реакций кальций-зависимых вторичных посредников. Считается, что этот механизм играет очень важную роль для формирования следов памяти. Связанные с рецепторами НМДА каналы открываются медленно и только при наличии глицина: они блокируются ионами магния и наркотическим галлюциногеном фенциклидином (который в англоязычной литературе называют "angel dust" – пыльный ангел).

С активацией НМДА рецепторов в гиппокампе связано возникновение очень интересного феномена – долговременной потенциации, особой формы активности нейронов, необходимой для формирования долговременной памяти (См. главу 17). Интересно отметить и тот факт, что чрезмерно высокая концентрация глутамата токсична для нейронов – с этим обстоятельством приходится считаться при некоторых поражениях мозга (кровоизлияния, эпилептические приступы, дегенеративные заболевания, например, хорея Гентингтона).

6.6.6. ГАМК и глицин

Два аминокислотных нейротранмиттера являются важнейшими тормозными медиаторами. Глицин тормозит деятельность интернейронов и мотонейронов спинного мозга. Высокая концентрация ГАМК обнаружена в сером веществе коры мозга, особенно в лобных долях, в подкорковых ядрах (хвостатое ядро и бледный шар), в таламусе, гиппокампе, гипоталамусе, ретикулярной формации. В качестве тормозного медиатора ГАМК используют некоторые нейроны спинного мозга, обонятельного тракта, сетчатки глаза, мозжечка.

Ряд производных от ГАМК соединений (пирацетам, аминолон, оксибутират натрия или ГОМК – гамма-оксимасляная кислота) стимулируют созревание структур мозга и образование стойких связей между популяциями нейронов. Это способствует формированию памяти, что послужило поводом к использованию названных соединений в клинической практике для ускорения восстановительных процессов после различных поражений мозга.

Предполагают, что психотропная активность ГАМК определяется её избирательным влиянием на интегративные функции мозга, которое состоит в оптимизации баланса активности взаимодействующих структур мозга. Так, например, при состояниях страха, фобиях больным помогают специальные антистраховые препараты – бензодиазепины, действие которых состоит в повышении чувствительности ГАМК-эргических рецепторов.

6.6.7. Нейропептиды

В настоящее время около 50 пептидов рассматриваются в качестве возможных нейротрансмиттеров, некоторые из них были известны прежде как нейрогормоны, выделяющиеся нейронами, но действующие вне мозга: вазопрессин, окситоцин. Другие нейропептиды были изучены впервые в качестве местных гормонов пищеварительного тракта, например, гастрин, холецистокинин и т. д., а также гормонов, образующихся в других тканях: ангиотензин, брадикинин и т. д.

Их существование в прежнем качестве по-прежнему не подвергается сомнению, но когда удаётся установить, что тот или иной пептид выделяется нервным окончанием и действует на соседний нейрон, его по справедливости относят и к нейротрансмиттерам. В мозгу значительное количество нейропептидов используется в гипоталамо-гипофизарной системе, хотя не менее хорошо известна, например, функция пептидов в передаче болевой чувствительности в задних рогах спинного мозга.

Все пептиды происходят из больших молекул-предшественниц, которые синтезируются в клеточном теле, изменяются в цитоплазматическом ретикулуме, преобразуются в аппарате Гольджи и доставляются в нервное окончание быстрым аксонным транспортом в секреторных пузырьках. Нейропептиды могут действовать как возбуждающие и как тормозные медиаторы. Часто они ведут себя как нейромодуляторы, т. е. не сами передают сигнал, а в зависимости от необходимости увеличивают или уменьшают чувствительность отдельных нейронов или их популяций к действию возбуждающих или тормозных нейротрансмиттеров.

По одинаковым участкам аминокислотной цепи можно обнаружить сходство между отдельными нейропептидами. Так, например, все эндогенные опиатные пептиды на одном конце цепи имеют одинаковую последовательность аминокислот: тирозин-глицин-глицин-фенилаланин. Именно этот участок является активным центром молекулы пептида. Нередко обнаружение подобного сходства между отдельными пептидами указывает на их генетическое родство. В соответствии с таким родством выделено несколько главных семейств нейроактивных пептидов:

1.Опиатные пептиды: лейцин-энкефалин, метионин-энкефалин, альфа-эндорфин, гамма-эндорфин, бета-эндорфин, дайнорфин, альфа-неоэндорфин.

2. Пептиды нейрогипофиза: вазопрессин, окситоцин, нейрофизин.

3. Тахикинины: вещество Р, бомбезин, физалемин, кассинин, уперолеин, эледоизин, вещество К.

4. Секретины: секретин, глюкагон, ВИП (вазоактивный интестинальный пептид), рилизинг-фактор соматотропина.

5. Инсулины: инсулин, инсулиноподобные ростковые факторы I и II.

6. Соматостатины: соматостатин, полипептид поджелудочной железы.

7. Гастрины: гастрин, холецистокинин.

Некоторые нейроны могут одновременно выделять пептидный и низкомолекулярный медиаторы, например, ацетилхолин и ВИП, причём оба действуют на одну и ту же мишень как синергисты. Но может быть и по-другому, как, например, в гипоталамусе, где выделяемые одним нейроном глутамат и дайнорфин действуют на одну постсинаптическую мишень, но глутамат возбуждает, а опиоидный пептид – ингибирует. Скорее всего пептиды в таких случаях действуют как нейромодуляторы. Иногда вместе с нейротрансмиттером выделяется ещё и АТФ, которая в некоторых синапсах тоже рассматривается в качестве медиатора, если, конечно, удаётся доказать наличие рецепторов для неё на постсинаптической мембране.

6.7. Опиатные пептиды

Семейство опиатных пептидов насчитывает свыше десятка веществ, молекулы которых включают от 5 до 31 аминокислот. У этих веществ есть общие биохимические особенности, хотя пути их синтеза могут отличаться. Например, синтез бета-эндорфина связан с образованием адренокортикотропного гормона (АКТГ) из общей крупной молекулы белка-предшественника – проопиомеланокортина, тогда как энкефалины образуются из другого предшественника, а дайнорфин – из третьего.

Поиск опиатных пептидов начался после обнаружения в мозгу опиатных рецепторов, связывающих алкалоиды опиума (морфин, героин и т. п.). Поскольку трудно представить появление таких рецепторов для связывания лишь посторонних веществ, их начали искать внутри организма. В 1975 году в журнале "Nature" появилось сообщение об открытии двух малых пептидов, которые состояли из пяти аминокислот, связывались с опиатными рецепторами и действовали сильнее, чем морфин. Авторы этого сообщения (Hughes J., Smith T.W., Kosterlitz H.W. и др.) назвали обнаруженные вещества энкефалинами (т.е. в голове). Через короткое время из гипоталамо-гипофизарного экстракта выделили ещё три пептида, которые назвали эндорфинами, т. е. эндогенными морфинами, затем был обнаружен дайнорфин и т. д.

Все опиатные пептиды иногда называют эндорфинами. Они связываются с опиатными рецепторами лучше, чем морфин, и действуют в 20-700 раз сильнее его. Описано пять функциональных типов опиатных рецепторов, вместе с самими пептидами они образуют весьма сложную систему. Присоединение пептида к рецептору приводит к образованию вторичных посредников, относящихся к системе цАМФ.

Самое высокое содержание опиоидных пептидов обнаружено в гипофизе, однако синтезируются они преимущественно в гипоталамусе. Значительное количество бета-эндорфина встречается в лимбической системе мозга, обнаруживается он и в крови. Концентрация энкефалинов особенно высока в задних рогах спинного мозга, где происходит передача сигналов от болевых окончаний: там энкефалины уменьшают выделение вещества Р – медиатора передачи информации о боли.

У экспериментальных животных можно вызвать обезболивание путём микроинъекции бета-эндорфина в желудочек мозга. Другой способ обезболивания состоит в электростимуляции нейронов, расположенных вокруг желудочка: при этом повышается концентрация эндорфинов и энкефалинов в ликворе. К такому же результату, т. е. к обезболиванию, приводило и введение b-эндорфинов, и стимуляция перивентрикулярной (околожелудочковой) области у онкологических больных. Интересно, что уровень опиатных пептидов повышается в ликворе и при обезболивании с помощью акупунктуры, и при эффекте плацебо (когда больной принимает лекарство, не зная, что в нём нет активного действующего начала).

Помимо аналгезирующего, т. е. обезболивающего действия опиоидные пептиды влияют на образование долговременной памяти, процесс научения, регулируют аппетит, половые функции и сексуальное поведение, они являются важным звеном стресс-реакции и процесса адаптации, они обеспечивают связь между нервной, эндокринной и иммунной системами (опиатные рецепторы обнаружены у лимфоцитов и моноцитов крови).

Резюме

В центральной нервной системе для передачи информации между клетками используются как низкомолекулярные, так и пептидные нейротрансмиттеры. Разные популяции нейронов используют различные медиаторы, этот выбор определён генетически и обеспечен определённым набором ферментов, необходимых для синтеза. Для одного и того же медиатора у разных клеток есть различные типы постсинаптических рецепторов, с ионотропным или метаботропным управлением. Метаботропное управление осуществляется при участии преобразующих белков и различных систем вторичных посредников. Некоторые нейроны выделяют одновременно с низкомолекулярным ещё и пептидный медиатор. Отличающиеся выделяемым медиатором нейроны в определённом порядке сосредоточены в разных структурах мозга.

Вопросы для самоконтроля

81. Что из перечисленного ниже не является критерием для отнесения вещества к нейромедиаторам?

А. Синтезируется в нейроне; Б. Накапливается в пресинаптическом окончании; В. Оказывает специфическое действие на эффектор; Г. Выделяется в кровь; Д. При искусственном введении наблюдается эффект, аналогичный тому, что бывает при естественном выделении.

А. Препятствует освобождению медиатора из пресинаптического окончания; Б. Действует подобно медиатору; В. Действует иначе, чем медиатор; Г. Блокирует постсинаптические рецепторы; Д. Не связывается с постсинаптическими рецепторами.

83. Что из перечисленного ниже характерно для пептидных нейротрансмиттеров?

А. Образуются при ферментативном окислении аминокислот; Б. Образуются в результате декарбоксилирования аминокислот; В. Могут синтезироваться в пресинаптическом окончании; Г. Доставляются в пресинаптическое окончание медленным аксоплазматическим транспортом; Д. Образуются в клеточном теле нейрона.

84. Что вызывает ток ионов кальция в пресинаптическое окончание во время передачи информации через синапс?

А. Потенциал действия; Б. Потенциал покоя; В. Экзоцитоз; Г. Связь синаптических пузырьков с цитоскелетом; Д. Возникновение постсинаптического потенциала.

85. Что преобразует возбуждение пресинаптического окончания в неэлектрическую активность (выделение нейромедиатора)?

А. Экзоцитоз; Б. Входящий ток ионов кальция; В. Вход ионов натрия при возбуждении окончания; Г. Выход ионов калия во время реполяризации; Д. Повышение активности ферментов, необходимых для синтеза медиатора.

86. Чем обусловлена посттетаническая потенциация?

А. Суммацией квантов медиатора; Б. Повышением скорости диффузии медиатора; В. Повышением концентрации ионов кальция в пресинаптическом окончании; Г. Повышением активности ферментов для синтеза медиатора; Д. Высокой плотностью каналов для кальция в области активных зон.

87. Какое из перечисленных ниже событий приводит к активации G-белков?

А. Превращение ГДФ в ГТФ; Б. Превращение АТФ в цАМФ; В. Активация аденилатциклазы; Г. Активация протеинкиназы; Д. Образование постсинаптического потенциала.

88. Какое из указанных событий должно произойти раньше других при метаботропном управлении?

А. Образование цАМФ; Б. Активация протеинкиназы; В. Активация аденилатциклазы; Г. Активация G-белка; Д. Открытие ионного канала.

89. Какую функцию выполняют ауторецепторы пресинаптической мембраны?

А. Осуществление обратного транспорта нейротрансмиттеров; Б. Регуляция количества медиатора в синаптической щели; В. Включение механизмов расщепления медиатора; Г. Ионотропное управление каналами пресинаптической мембраны; Д. Связывание медиатора, выделяющегося из постсинаптического нейрона.

90. Какой из указанных механизмов не используется для удаления медиаторов из синаптической щели?

А. Ферментативное расщепление; Б. Захват молекул медиатора клетками глии; В. Захват молекул медиатора постсинаптическим нейроном; Г. Транспорт молекул медиатора в окончание пресинаптического нейрона; Д. диффузия.

91. При прогрессирующем слабоумии (болезни Альцгеймера) нарушен синтез одного из нейромедиаторов. Это:

А. Ацетилхолин; Б. Глутамат; В. Дофамин; Г. Норадреналин; Д. ГАМК.

92. Какой медиатор выделяют нейроны голубого пятна?

А. Дофамин; Б. Глицин; В. Глутамат; Г. Норадреналин; Д. Адреналин.

93. Какой медиатор синтезируется в нейронах чёрной субстанции среднего мозга?

А. Дофамин; Б. Норадреналин; В. Ацетилхолин; Г. b-Эндорфин; Д. Глутамат.

94. В какой из перечисленных ниже структур мозга обнаружена самая высокая концентрация дофамина?

А. Ретикулярная формация; Б. Затылочная кора; В. Лобная кора; Г. Мозжечок; Д. Таламус.

95. Какой медиатор выделяют нейроны ядер шва?

А. Дофамин; Б. Норадреналин; В. Серотонин; Г. Гистамин; Д. Глицин.

96. Какой медиатор действует на НМДА-рецепторы?

А. Ацетилхолин; Б. Глутамат; В. Глицин; Г. Энкефалин; Д. Адреналин.

97. Для ускорения восстановительных процессов и улучшения памяти после повреждений мозга используют производные одного из нейротрансмиттеров. Укажите его.

А. ГАМК; Б. Глицин; В. Ацетилхолин; Г. Глутамат; Д. Дофамин.

98. Какое из перечисленных ниже веществ не является пептидным нейротрансмиттером?

А. Эндорфин; Б. Глицин; В. Вещество Р; Г. Соматостатин; Д. Энкефалин.

99. Какой медиатор синтезируется некоторыми нейронами головного мозга и оказывает влияние на передачу информации о болевых стимулах в спинном мозгу?

А. Эндорфин; Б. Энкефалин; В. Вещество Р. Г. Окситоцин; Д. Вазопрессин.

100. В какой области мозга в качестве медиаторов особенно часто используются пептидные нейротрансмиттеры?

А. Мозжечок; Б. Ретикулярная формация; В. Гипоталамус и гипофиз; Г. Лобная кора; Д. Подкорковые ядра.

Определение понятий

Медиаторы (от лат. mediator посредник: синоним - нейромедиаторы ) - это биологически активные вещества, секретируемые нервными окончаниями и обеспечивающие передачу нервного возбуждения в синапсах. Следует особо подчеркнуть, что возбуждение передаётся в синапсах в виде локального потенциала - возбуждающего постсинаптического потенциала (ВПСП ), но не в виде нервного импульса.

Медиаторы являются лигандами (биолигандами) для ионотропных рецепторов хемоуправляемых ионных каналов мембраны. Таким образом, медиаторы открывают хемоуправляемые ионные каналы. Известно порядка 20-30 видов медиаторов.

После обнаружения явления синаптического торможения оказалось, что кроме возбуждающих синапсов существуют также ещё и тормозные синапсы , которые не передают возбуждение, а наводят торможение на свои нейроны-мишени. Соответственно, они секретируют тормозные медиаторы .

В качестве медиаторов могут выступать самые различные вещества. Насчитывается более 30 видов медиаторов, однако лишь 7 из них принято относить к «классическим» медиаторам.

Классические медиаторы

  1. (глутамат, глютамат, он же - пищевая добавка Е-621 для усиления вкуса)
  2. . Подробное видео, д.б.н. В. А. Дубынин:
  3. . Подробное видео, д.б.н. В.А. Дубынин:
  4. . Подробное видео, д.б.н. В.А. Дубынин:
  5. (ГАМК). Подробное видео, д.б.н. В.А. Дубынин:
  6. . Подробное видео, д.б.н. В.А. Дубынин:

Другие медиаторы

  1. Гистамин и ананамид. Подробное видео, д.б.н. В.А. Дубынин:
  2. Эндорфины и энкефалины. Подробное видео, д.б.н. В.А. Дубынин:

ГАМК и глицин являются чисто тормозными медиаторами, причём глицин действует в качестве тормозного медиатора на уровне спинного мозга. Ацетилхолин, норадреналин, дофамин, серотонин могут вызывать как возуждение, так и торможение. Дофамин и серотонин являются "по совместительству" и медиаторами, и модуляторами, и гормонами.

Кроме возбуждающих и тормозных медиаторов нервные окончания могут выделять и другие биологически активные вещества, влияющие на деятельность их мишеней. Это модуляторы , или нейромодуляторы .

Не сразу бывает понятно, чем же именно отличаются друг от друга нейромедиаторы и нейромодуляторы . Оба типа этих управляющих веществ содержатся в синаптических пузырьках пресинаптических окончаний и выбрасываются в синаптическую щель. Они относятся к нейротрансмиттерам - передатчикам управляющих сигналов.

Нейротрансмиттеры = медиаторы + модуляторы .

Медиаторы и модуляторы отличаются друг от друга по нескольким признакам. Это поясняет размещённый здесь оригинальный рисунок. Попробуйте найти на нём эти отличия...

Говоря об общем числе известных медиаторов, можно назвать от десятка до сотни химических веществ.

Критерии нейромедиаторов

1. Вещество выделяется из нейрона при его активации.
2. В клетке присутствуют ферменты для синтеза данного вещества.
3. В соседних клетках (клетках-мишенях) выявляются белки-рецепторы, активируемые данным медиатором.
4. Фармакологический (экзогенный) аналог имитирует действие медиатора.
Иногда медиаторы объединяют с модуляторами, то есть веществами, которые прямо не участвуют в процессе передачи сигнала (возбуждения или торможения) от нейрона к нейрону, но могут, однако, этот процесс существенно усиливать или ослаблять.

Первичные медиаторы - это те, которые действуют непосредственно на рецепторы постсинаптической мембраны.
Сопутствующие медиаторы и медиаторы-модуляторы - могут запускать каскад ферментативных реакций, которые, например, изменяют чувствительность рецептора к первичному медиатору.
Аллостерические медиаторы - могут участвовать в кооперативных процессах взаимодействия с рецепторами первичного медиатора.

Различия между медиаторами и модуляторами

Важнейшим отличием медиаторов от модуляторов считается то, что медиаторы способны передавать возбуждение или наводить торможение на клетку-мишень, в то время как модуляторы лишь подают сигнал к началу метаболических процессов внутри клетки.

Медиаторы связываются с ионотропными молекулярными рецепторами, которые являются наружной частью ионных каналов. Поэтому медиаторы могут открывать ионные каналы и тем самым запускать трансмембранные потоки ионов. Соответственно, входящие в ионные каналы положительные ионы натрия или кальция вызывают деполяризацию (возбуждение), а входящие отрицательные ионы хлора - гиперполяризацию (торможение). Ионотропные рецепторы вместе со своими каналами сосредоточены на постсинаптической мембране. Всего известно примерно 20 видов медиаторов.

В отличие от медиаторов, известно намного больше видов модуляторов - более 600 по сравнению с 20-30 медиаторами. Практически все модуляторы являются по химическому строению нейропептидами , т.е. аминокислотными цепочками, более короткими, чем белки. Интересно, что некоторые медиаторы "по совместительству" могут играть и роль модуляторов, т.к. к ним имеются метаботропные рецепторы. Таковы, например, серотонин и ацетилхолин.

Так, к началу 1970-х годов выяснили, что дофамин, норадреналин и серотонин, известные как медиаторы в центральной нервной системе, оказывали необычное воздействие на клетки-мишени. В отличие от быстрых, наступающих за миллисекунды, эффектов классических аминокислотных медиаторов и ацетилхолина их действие нередко развивается неизмеримо дольше: сотни миллисекунд или секунды, а может длиться даже целыми часами. Такой способ передачи возбуждения между нейронами назвали “медленной синаптической передачей”. Именно такие медленные эффекты предложил назвать "метаботропными" Дж. Экклс (John Eccles) в соавторстве с супружеской парой биохимиков по фамилии Мак-Гир в 1979 году. Он хотел этим подчеркнуть, что метаботропные рецепторы запускают метаболические процессы в постсинаптическом окончании синапса, в отличие от быстрых "ионотропных" рецепторов, управляющих ионными каналами в постсинаптической мембране. Как оказалось, метаботропные дофаминовые рецепторы, действительно, запускают относительно медленный процесс, ведущий к фосфорилированию белков.

Механизм внутриклеточных эффектов модуляторов, осуществляющих медленную синаптическую передачу, был раскрыт в исследованиях Пола Грингарда (Paul Greengard). Он продемонстрировал, что, помимо классических эффектов, реализующихся через ионотропные рецепторы и непосредственное изменение электрических мембранных потенциалов, многие нейротрансмиттеры (катехоламины, серотонин и многие нейропептиды) оказывают влияние на биохимические процессы в цитоплазме нейронов. Именно этими метаботропными эффектами и обусловлено необычно медленное действие таких трансмиттеров и их длительное модулирующее влияние на функции нервных клеток. Поэтому именно нейромодуляторы вовлечены в обеспечение сложных состояний нервной системы - эмоций, настроений, мотиваций, а не в передачу быстрых сигналов для восприятия, движения, речи и т.д.

Патология

Нарушения взаимодействия нейромедиаторных систем могут считаться начальным звеном патогенеза опиатной наркомании. Они же являются мишенью фармакотерапии при лечении абстинентного синдрома и в период поддержания ремиссии.

Источники:
Медиаторы и синапсы / Зефиров А.Л., Черанов С.Ю., Гиниатуллин Р.А., Ситдикова Г.Ф., Гришин С.Н. / Казань: КГМУ, 2003. 65 с.

А вот - шутливая песенка про главный медиатор нервной системы (по совместительству он же - пищевая добавка Е-621) - глутамат натрия: www.youtube.com/watch?v=SGdqRhj2StU

Характеристика отдельных трансмиттеров приводится на дочерних страницах ниже

Медиаторами, или нейротрансмиттерами, нейронов ЦНС являются различные биологически активные вещества. В зависимости от химической природы их можно разделить на 4 группы: 1) амины (ацетилхолин, норадреналин, дофамин, серотонин), 2) аминокислоты (глицин, глутаминовая, аспарагиновая, гамма-аминомасляная - ГАМК), 3) пуриновые и нуклеотиды (АТФ); 4) нейропептиды (вещество Р, вазопрессин, опоидни пептиды и др.).
Раньше считали, что во всех окончаниях одного нейрона "выделяется один медиатор (по принципу Дейла). За последние годы выяснили, что во многих нейронах может содержаться 2 медиаторы или больше.
По действию медиаторы можно разделить на ионотропных и метаболотропни. Ионотропных медиаторы после взаимодействия с циторецепторамы постсинаптической мембраны изменяют проницаемость ионных каналов. Метаболотропни медиаторы постсинаптическую действие проявляют путем активации специфических ферментов мембраны. Вследствие этого в мембране или (чаще) в цитоплазме клетки активируются так называемые вторичные посредники (вторичные мессенджеры), которые в свою очередь запускают каскады внутриклеточных процессов, тем самым влияя на функции клеток.
К основным мессенджеров систем внутриклеточной сигнализации относят аденилатциклазной и полифосфоинозитидну. В основе первой лежит аденилатциклазной механизм. Центральным звеном второй системы является кальциймобилизуючий каскад полифосфоинозитидив, который контролируется фосфолипазой С. Физиологический эффект этих систем осуществляется путем активации специфических ферментов - протеинфосфокиназ, конечным итогом чего является широкий спектр воздействия на белковые субстраты, которые могут подвергаться фосфорилированию. Вследствие этого изменяется проницаемость мембран для ионов, синтезируются и выделяются медиаторы, регулируется синтез белков, осуществляется энергетический обмен и т.д.. Метаболотропним эффектом обладают большинство нейропептидов. Метаболические изменения, происходящие в клетке или на ее мембране под действием метаболотропних медиаторов, длительные, чем при действии ионотропных медиаторов. Они могут затрагивать даже геном клетки.
По функциональным свойствам медиаторы ЦНС делятся на возбуждающие, тормозные и модулирующие. Возбуждающими медиаторами могут быть различные вещества, которые вызывают деполяризацию постсинаптической мембраны. Важнейшее значение имеют производные глутаминовой кислоты (глутамата), субстанция Р. Некоторые центральные нейроны имеют холинорецепторы, т.е. содержат на постсинаптической мембране рецепторы, которые реагируют с холинового соединениями, например, ацетилхолин в клетках Реншоу.. возбуждающими медиаторами могут быть также моноамины (норадреналин, дофамин, серотонин). € основания считать, что тип медиатора, который образуется в синапсе, обусловлен не только свойствами окончания, но и общим направлением биохимических процессов во всем нейроне.
Природа тормозного медиатора до конца не установлена. Полагают, что в синапсах различных нервных структур эту функцию могут выполнять аминокислоты - глицин и ГАМК.

СИНАПС

Как передается возбуждение от одного нейрона другому или от нейрона, например, на мышечное волокно? Этой проблемой интересуются не только профессиональные нейробиологи, но и врачи, особенно фармакологи. Знание биологических механизмов необходимо для лечения некоторых заболеваний, а также для создания новых лекарств и препаратов. Дело в том, что одними из основных мест воздействия этих веществ на организм человека являются места передачи возбуждения с одного нейрона на другой (или на другую клетку, например клетку сердечной мышцы, стенки сосудов и пр.). Отросток нейрона аксон направляется к другому нейрону и образует на нем контакт, который называют синапсом (в переводе с греческого - контакт; см. рис. 2.3). Именно синапс хранит многие тайны мозга. Нарушение этого контакта, например, веществами, блокирующими его работу, приводит к тяжелейшим последствиям для человека. Это место приложения действия наркотиков. Примеры будут приведены ниже, а сейчас рассмотрим, как устроен и как работает синапс.

Трудности этого исследования определяются тем, что сам синапс очень маленький (его диаметр не более 1 мкм). Один нейрон получает такие контакты, как правило, от нескольких тысяч (3 - 10 тыс.) других нейронов. Каждый синапс надежно закрыт специальными клетками глии, поэтому исследовать его очень непросто. На рис. 2.12 показана схема синапса, как это представляет себе современная наука. Несмотря на свою миниатюрность, он устроен весьма сложно. Одним из его основных компонентов являются пузырьки, которые находятся внутри синапса. Эти пузырьки содержат биологически очень активное вещество, которое называется нейротрансмиттером, или медиатором (передатчиком).

Вспомним, что нервный импульс (возбуждение) с огромной скоростью продвигается по волокну и подходит к синапсу. Этот потенциал действия вызывает деполяризацию мембраны синапса (рис. 2.13), однако это не приводит к генерации нового возбуждения (потенциала действия), а вызывает открывание специальных ионных каналов, с которыми мы еще не знакомы. Эти каналы пропускают ионы кальция внутрь синапса. Ионы кальция играют очень большую роль в деятельности организма. Специальная железа внутренней секреции - паращитовидная (она находится поверх щитовидной железы) регулирует содержание кальция в организме. Многие заболевания связаны с нарушением обмена кальция в организме. Например, его недостаток приводит к рахиту у маленьких детей.

Каким образом кальций участвует в работе синапса? Попадая в цитоплазму синаптического окончания, кальций входит в связь с белками, образующими оболочку пузырьков, в которых хранится медиатор. В конечном итоге мембраны синаптических пузырьков сжимаются, выталкивая свое содержимое в синаптическую щель. Этот процесс очень напоминает сокращение мышечного волокна в мышце, во всяком случае, эти два процесса имеют одинаковый механизм на молекулярном уровне. Таким образом, связывание кальция белками оболочки пузырька приводит к ее сокращению, и содержание пузырька впрыскивается (экзоцитоз) в щель, которая отделяет мембрану одного нейрона от мембраны другого. Эта щель называется синоптической щелью. Из описания должно быть ясно, что возбуждение (электрический потенциал действия) нейрона в синапсе превращается из электрического импульса в импульс химический. Другими словами, каждое возбуждение нейрона сопровождается выбросом в окончании его аксона порции биологически активного вещества - медиатора. Далее молекулы медиатора связываются с специальными белковыми молекулами, которые находятся на мембране другого нейрона. Эти молекулы называются рецепторами. Рецепторы устроены уникально и связывают только один тип молекул. В некоторых описаниях указывается, что они подходят, как «ключ к замку» (ключ подходит только к своему замку).



Рецептор состоит из двух частей. Одну можно назвать «узнающим центром», другую - «ионным каналом». Если молекулы медиатора заняли определенные места (узнающий центр) на молекуле рецептора, то ионный канал открывается и ионы начинают входить в клетку (ионы натрия) или выходить (ионы калия) из клетки. Другими словами, через мембрану протекает ионный ток, который вызывает изменение потенциала на мембране. Этот потенциал получил название постсинаптического потенциала (рис. 2.13). Очень важным свойством описанных ионных каналов является то, что количество открытых каналов определяется количеством связанных молекул медиатора, а не потенциалом на мембране, как в случае с электровозбудимой мембраной нервного волокна. Таким образом, постсинаптические потенциалы имеют свойство градуальности: амплитуда потенциала определяется количеством молекул медиатора, связанного рецепторами. Благодаря этой зависимости амплитуда потенциала на мембране нейрона развивается пропорционально количеству открытых каналов.

На мембране одного нейрона могут одновременно находиться два вида синапсов: тормозные и возбудительные. Все определяется устройством ионного канала мембраны. Мембрана возбудительных синапсов пропускает как ионы натрия, так и ионы калия. В этом случае мембрана нейрона деполяризуется. Мембрана тормозных синапсов пропускает только ионы хлора и гиперполяризуется. Очевидно, что если нейрон заторможен, потенциал мембраны увеличивается (гиперполяризация). Таким образом, нейрон благодаря воздействию через соответствующие синапсы может возбудиться или прекратить возбуждение, затормозиться. Все эти события происходят на соме и многочисленных отростках дендрита нейрона, на последних находится до нескольких тысяч тормозных и возбудительных синапсов.

В качестве примера разберем, как действует в синапсе медиатор, который называется ацетилхолином. Этот медиатор широко распространен в головном мозге и в периферических окончаниях нервных волокон. Например, двигательные импульсы, которые по соответствующим нервам приводят к сокращению мышц нашего тела, оперируют ацетилхолином. Ацетилхолин был открыт в 30-х годах австрийским ученым О. Леви. Эксперимент был очень прост: изолировали сердце лягушки с подходящим к нему блуждающим нервом. Было известно, что электрическая стимуляция блуждающего нерва приводит к замедлению сокращений сердца вплоть до полной его остановки. О. Леви простимулировал блуждающий нерв, получил эффект остановки сердца и взял из сердца немного крови. Оказалось, что если эту кровь добавить в желудочек работающего сердца, то оно замедляет свои сокращения. Был сделан вывод: при стимуляции блуждающего нерва выделяется вещество, останавливающее сердце. Это и был ацетилхолин. Позже был открыт фермент, который расщеплял ацетилхолин на холин (жир) и уксусную кислоту, в результате чего прекращалось действие медиатора. Этим исследованием впервые была установлена точная химическая формула медиатора и последовательность событий в типичном химическом синапсе. Эта последовательность событий сводится к следующему.

Потенциал действия, пришедший по пресинаптическому волокну к синапсу, вызывает деполяризацию, которая включает кальциевый насос, и ионы кальция поступают в синапс; ионы кальция связываются белками мембраны синаптических пузырьков, что приводит к активному опорожнению (экзоцитозу) пузырьков в синаптическую щель. Молекулы медиатора связываются (узнающим центром) соответствующими рецепторами постсинаптической мембраны, при этом открывается ионный канал. Через мембрану начинает протекать ионный ток, что приводит к возникновению на ней постсинаптического потенциала. В зависимости от характера открытых ионных каналов возникает возбудительный (открываются каналы для ионов натрия и калия) или тормозной (открываются каналы для ионов хлора) постсинаптический потенциал.

Ацетилхолин весьма широко распространен в живой природе. Например, он находится в стрекательных капсулах крапивы, в стрекательных клетках кишечнополостных животных (например, пресноводной гидры, медузы) и пр. В нашем организме ацетилхолин выбрасывается в окончаниях двигательных нервов, управляющих мышцами, из окончаний блуждающего нерва, который управляет деятельностью сердца и других внутренних органов. Человек давно знаком с антагонистом ацетилхолина - это яд кураре, которым пользовались индейцы Южной Америки при охоте на животных. Оказалось, что кураре, попадая в кровь, вызывает обездвиживание животного, и оно погибает фактически от удушья, но кураре не останавливает сердце. Исследования показали, что в организме существуют два типа рецепторов к ацетилхолину: один успешно связывает никотиновую кислоту, а другой - мускарин (вещество, которое выделено из гриба рода Muscaris). На мышцах нашего тела находятся рецепторы никотинового типа к ацетилхолину, тогда как на сердечной мышце и нейронах головного мозга - рецепторы к ацетилхолину мускаринового типа.

В настоящее время в медицине широко применяют синтетические аналоги кураре для обездвиживания больных во время сложных операций на внутренних органах. Применение этих средств приводит к полному параличу двигательной мускулатуры (связывается рецепторами никотинового типа), но не влияет на работу внутренних оранов, в том числе сердца (рецепторы мускаринового типа). Нейроны головного мозга, возбуждаемые через мускариновые ацетилхолиновые рецепторы, играют большую роль в проявлении некоторых психических функций. Сейчас известно, что гибель таких нейронов приводит к старческому слабоумию (болезнь Альцгеймера). Другим примером, который должен показать важность именно рецепторов никотинового типа на мышце к ацетилхолину, может служить заболевание, называемое miastenia grevis (мышечная слабость). Это генетически наследуемая болезнь, т. е. ее происхождение связано с «поломками» генетического аппарата, которые передаются по наследству. Заболевание проявляется в возрасте ближе к половозрелости и начинается с мышечной слабости, которая постепенно усиливается и захватывает все более обширные группы мышц. Причиной этого недуга оказалось то, что организм больного вырабатывает белковые молекулы, которые прекрасно связываются ацетилхолиновыми рецепторами никотинового типа. Занимая эти рецепторы, они препятствуют связыванию с ними молекул ацетилхолина, выбрасываемых из синаптических окончаний двигательных нервов. Это и приводит к блокированию синаптического проведения к мышцам и, следовательно, к их параличу.

Описанный на примере ацетилхолина тип синаптической передачи - не единственный в ЦНС. Второй тип синаптической передачи также широко распространен, например, в синапсах, в которых медиаторами являются биогенные амины (дофамин, серотонин, адреналин и др.). В этом типе синапсов имеет место следующая последовательность событий. После того как образовался комплекс «молекула медиатора - рецепторный белок», активируется специальный мембранный белок (G-белок). Одна молекула медиатора при связывании с рецептором может активировать много молекул G-белка, и это усиливает эффект медиатора. Каждая активированная молекула G-белка в одних нейронах может открывать ионный канал, а в других активировать внутри клетки синтез специальных молекул, так называемых вторичных посредников. Вторичные посредники могут запускать в клетке многие биохимические реакции, связанные с синтезом, например, белка, в этом случае возникновения электрического потенциала на мембране нейрона не происходит.

Существуют и другие медиаторы. В головном мозге в качестве медиаторов «работает» целая группа веществ, которые объединены под названием биогенные амины. В середине прошлого столетия английский врач Паркинсон описал болезнь, которая проявлялась как дрожательный паралич. Это тяжелое страдание вызвано разрушением в мозге больного нейронов, которые в своих синапсах (окончаниях) выделяют дофамин - вещество из группы биогенных аминов. Тела этих нейронов находятся в среднем мозге, образуя там скопление, которое называется черной субстанцией. Исследования последних лет показали, что дофамин в мозге млекопитающих также имеет несколько типов рецепторов (в настоящее время известно шесть типов). Другое вещество из группы биогенных аминов - серотонин (другое название 5-окситриптамин) - вначале было известно как средство, приводящее к подъему кровяного давления (сосудосуживающее). Обратите внимание, что, это отражено в его названии. Однако оказалось, что истощение в головном мозге серотонина приводит к хронической бессоннице. В опытах на животных было установлено, что разрушение в мозговом стволе (задних отделах мозга) специальных ядер, которые известны в анатомии как ядра шва, приводит к хронической бессоннице и в дальнейшем гибели этих животных. Биохимическое исследование установило, что нейроны ядер шва содержат серотонин. У пациентов, страдающих хронической бессонницей, также обнаружено снижение концентрации серотонина в мозге.

К биогенным аминам относят также адреналин и норадреналин, которые содержатся в синапсах нейронов автономной нервной вегетативной системы. Во время стресса под влиянием специального гормона - адренокортикотропного (подробнее см. ниже) - из клеток коры надпочечников в кровь также выбрасываются адреналин и норадреналин.

Из вышеизложенного понятно, какое значение в функциях нервной системы играют медиаторы. В ответ на приход нервного импульса к синапсу происходит выброс медиатора; молекулы медиатора соединяются (комплементарно - как «ключ к замку») с рецепторами постсинаптической мембраны, что приводит к открыванию ионного канала или к активированию внутриклеточных реакций. Примеры синаптической передачи, рассмотренные выше, полностью соответствуют этой схеме. Вместе с тем благодаря исследованиям последних десятилетий эта довольно простая схема химической синаптической передачи значительно усложнилась. Появление иммунохимических методов позволило показать, что в одном синапсе могут сосуществовать несколько групп медиаторов, а не один, как это предполагали раньше. Например, в одном синаптическом окончании одновременно могут находиться синаптические пузырьки, содержащие ацетилхолин и норадреналин, которые довольно легко идентифицируются на электронных фотографиях (ацетилхолин содержится в прозрачных пузырьках диаметром около 50 нм, а норадреналин - в электронно-плотных диаметром до 200 нм). Кроме классических медиаторов, в синаптическом окончании могут находиться один или несколько ней-ропептидов. Количество веществ, содержащихся в синапсе, может доходить до 5-6 (своеобразный коктейль). Более того, медиаторная специфичность синапса может меняться в онтогенезе. Например, нейроны симпатических ганглиев, иннервирующие потовые железы у млекопитающих, исходно норадренергичны, но у взрослых животных становятся холинергичными.

В настоящее время при классификации медиаторных веществ принято выделять: первичные медиаторы, сопутствующие медиаторы, медиаторы-модуляторы и аллостерические медиаторы. Первичными медиаторами считают те, которые действуют непосредственно на рецепторы постсинаптической мембраны. Сопутствующие медиаторы и медиаторы-модуляторы могут запускать каскад ферментативных реакций, которые, например, фосфорилируют рецептор для первичного медиатора. Аллостерические медиаторы могут участвовать в кооперативных процессах взаимодействия с рецепторами первичного медиатора.

Долгое время за образец принимали синаптическую передачу по анатомическому адресу (принцип «точка - в точку»). Открытия последних десятилетий, особенно медиаторной функции нейропептидов, показали, что в нервной системе возможен принцип передачи и по химическому адресу. Другими словами, медиатор, выделяющийся из данного окончания, может действовать не только на «свою» постсинаптическую мембрану, но и за пределами данного синапса - на мембраны других нейронов, имеющих соответствующие рецепторы. Таким образом, физиологическая реакция обеспечивается не точным анатомическим контактом, а наличием соответствующего рецептора на клетке-мишени. Собственно этот принцип был давно известен в эндокринологии, а исследования последних лет нашли ему более широкое применение.

Все известные типы хеморецепторов на постсинаптической мембране разделяют на две группы. В одну группу входят рецепторы, в состав которых включен ионный канал, открывающийся при связывании молекул медиатора с «узнающим» центром. Рецепторы второй группы (метаботропные рецепторы) открывают ионный канал опосредованно (через цепочку биохимических реакций), в частности, посредством активации специальных внутриклеточных белков.

Одними из самых распространенных являются медиаторы, принадлежащие к группе биогенных аминов. Эта группа медиаторов достаточно надежно идентифицируется микрогистологическими методами. Известны две группы биогенных аминов: катехоламины (дофамин, норадреналин и адреналин) и индоламин (серотонин). Функции биогенных аминов в организме весьма многообразны: медиаторная, гормональная, регуляция эмбриогенеза.

Основным источником норадренергических аксонов являются нейроны голубого пятна и прилежащих участков среднего мозга (рис. 2.14). Аксоны этих нейронов широко распространяются в мозговом стволе, мозжечке, в больших полушариях. В продолговатом мозге крупное скопление норадренергических нейронов находится в вентролатеральном ядре ретикулярной формации. В промежуточном мозге (гипоталамусе) норадренергические нейроны наряду с дофаминергическими нейронами входят в состав гипоталамо-гипофизарной системы. Норадренергические нейроны в большом количестве содержатся в нервной периферической системе. Их тела лежат в симпатической цепочке и в некоторых интрамуральных ганглиях.

Дофаминергические нейроны у млекопитающих находятся преимущественно в среднем мозге (так называемая нигро-неостриарная система), а также в гипоталамической области. Дофаминовые цепи мозга млекопитающих хорошо изучены. Известны три главные цепи, все они состоят из однонейронной цепочки. Тела нейронов находятся в мозговом стволе и отсылают аксоны в другие области головного мозга (рис. 2.15).

Одна цепь очень проста. Тело нейрона находится в области гипоталамуса и отсылает короткий аксон в гипофиз. Этот путь входит в состав гипоталамо-гипофизарной системы и контролирует систему эндокринных желез.

Вторая дофаминовая система также хорошо изучена. Это черная субстанция, многие клетки которой содержат дофамин. Аксоны этих нейронов проецируются в полосатые тела. Эта система содержит примерно 3/4 дофамина головного мозга. Она имеет решающее значение в регулировании тонических движений. Дефицит дофамина в этой системе приводит к болезни Паркинсона. Известно, что при этом заболевании происходит гибель нейронов черной субстанции. Введение L-DOPA (предшественника дофамина) облегчает у больных некоторые симптомы заболевания.

Третья дофаминергическая система участвует в проявлении шизофрении и некоторых других психических заболеваний. Функции этой системы пока изучены недостаточно, хотя сами пути хорошо известны. Тела нейронов лежат в среднем мозге рядом с черной субстанцией. Они проецируют аксоны в вышележащие структуры мозга, мозговую кору и лимбическую систему, особенно к фронтальной коре, к септальной области и энторинальной коре. Энторинальная кора, в свою очередь, является главным источником проекций к гиппокампу.

Согласно дофаминовой гипотезе шизофрении, третья дофаминергическая система при этом заболевании сверхактивна. Эти представления возникли после открытия веществ, снимающих некоторые симптомы заболевания. Например, хлорпромазин и галоперидол имеют разную химическую природу, но они одинаково подавляют активность дофаминергической системы мозга и проявление некоторые симптомов шизофрении. У больных шизофренией, в течение года получавших эти препараты, появляются двигательные нарушения, получившие название tardive dyskinesia (повторяющиеся причудливые движения лицевой мускулатуры, включая мускулатуру рта, которые больной не может контролировать).

Серотонин почти одновременно открыли в качестве сывороточного сосудосуживающего фактора (1948) и энтерамина, секретируемого энтерохромаффиновыми клетками слизистой оболочки кишечника. В 1951 г. было расшифровано химическое строение серотонина и он получил новое название - 5-гидрокситриптамин. В организме млекопитающих он образуется гидроксилированием аминокислоты триптофана с последующим декарбоксилированием. 90% серотонина образуется в организме энтерохромаффиновыми клетками слизистой оболочки всего пищеварительного тракта. Внутриклеточный серотонин инактивируется моноаминоксидазой, содержащейся в митохондриях. Серотонин внеклеточного пространства окисляется перулоплазмином. Большая часть вырабатываемого серотонина связывается с кровяными пластинками и по кровяному руслу разносится по организму. Другая часть действует в качестве местного гормона, способствуя авторегулированию кишечной перистальтики, а также модулируя эпителиальную секрецию и всасывание в кишечном тракте.

Серотонинергические нейроны широко распространены в центральной нервной системе (рис. 2.16). Они обнаруживаются в составе дорсального и медиального ядер шва продолговатого мозга, а также в среднем мозге и варолиевом мосту. Серотонинергические нейроны иннервируют обширные области мозга, включающие кору больших полушарий, гиппокамп, бледный шар, миндалину, область гипоталамуса. Интерес к серотонину был привлечен в связи с проблемой сна. При разрушении ядер шва животные страдали бессонницей. Сходный эффект оказывали вещества, истощающие хранилище серотонина в мозге.

Самая высокая концентрация серотонина обнаружена в эпифизе (pineal gland). Серотонин в эпифизе превращается в мелатонин, который участвует в пигментации кожи, а также влияет у многих животных на активность женских гонад. Содержание как серотонина, так и мелатонина в эпифизе контролируется циклом свет - темнота через нервную симпатическую систему.

Другую группу медиаторов ЦНС составляют аминокислоты. Уже давно известно, что нервная ткань с ее высоким уровнем метаболизма содержит значительные концентрации целого набора аминокислот (перечислены в порядке убывания): глутаминовой кислоты, глутамина, аспарагиновой кислоты, гамма-аминомасляной кислоты (ГАМК).

Глутамат в нервной ткани образуется преимущественно из глюкозы. У млекопитающих больше всего глутамата содержится в конечном мозге и мозжечке, где его концентрация примерно в 2 раза выше, чем в стволе мозга и спинном мозге. В спинном мозге глутамат распределен неравномерно: в задних рогах он находится в большей концентрации, чем в передних. Глутамат является одним из самых распространенных медиаторов в ЦНС.

Постсинаптические рецепторы к глутамату классифицируются в соответствии с аффинностью (сродством) к трем экзогенным агонистам - квисгулату, каинату и N-метил-D-аспартату (NMDA). Ионные каналы, активируемые квисгулатом и каинатом, подобны каналам, которые управляются никотиновыми рецепторами - они пропускают смесь катионов (Na + и. К +). Стимуляция NMDA-рецепторов имеет сложный характер активации: ионный ток, который переносится не только Na + и К + , но также Са ++ при открывании ионного канала рецептора, зависит от потенциала мембраны. Вольтзависимая природа этого канала определяется разной степенью его блокирования ионами Mg ++ с учетом уровня мембранного потенциала. При потенциале покоя порядка - 75 мВ ионы Mg ++ , которые преимущественно находятся в межклеточной среде, конкурируют с ионами Са ++ и Na + за соответствующие каналы мембраны (рис. 2.17). Вследствие того, что ион Mg ++ не может пройти через пору, канал блокируется всякий раз, как попадает туда ион Mg ++ . Это приводит к уменьшению времени открытого канала и проводимости мембраны. Если мембрану нейрона деполяризовать, то количество ионов Mg ++ , которые закрывают ионный канал, снижается и через канал беспрепятственно могут проходить ионы Са ++ , Na + и. К + . При редких стимуляциях (потенциал покоя изменяется мало) глутаматергического рецептораВПСП возникает преимущественно за счет активации квисгулатных и каинатных рецепторов; вклад NMDA-рецепторов незначителен. При длительной деполяризации мембраны (ритмическая стимуляция) магниевый блок удаляется, и NMDA-каналы начинают проводить ионы Са ++ , Na + и. К + . Ионы Са ++ через вторичные посредники могут потенцировать (усиливать) минПСП, что может привести, например, к длительному увеличению синаптической проводимости, сохраняющейся часами и даже сутками.

Из тормозных медиаторов ГАМК является самой распространенной в ЦНС. Она синтезируется из L-глутаминовой кислоты в одну стадию ферментом декарбоксилазой, наличие которой является лимитирующим фактором этого медиатора. Известно два типа ГАМК-рецепторов на постсинаптической мембране: ГАМКА (открывает каналы для ионов хлора) и ГАМКБ (открывает в зависимости от типа клетки каналы для. К + или Са ++). На рис. 2.18 показана схема ГАМК-рецептора. Интересно, что в его состав входит бензодиазипиновый рецептор, наличием которого объясняют действие так называемых малых (дневных) транквилизаторов (седуксена, тазепама и др.). Прекращение действия медиатора в ГАМК-синапсах происходит по принципу обратного всасывания (молекулы медиатора специальным механизмом поглощаются из синаптической щели в цитоплазму нейрона). Из антагонистов ГАМК хорошо известен бикукулин. Он хорошо проходит через гематоэнцефалический барьер, оказывает сильное воздействие на организм даже в малых дозах, вызывая конвульсии и смерть. ГАМК обнаруживается в ряде нейронов мозжечка (в клетках Пуркинье, клетках Гольджи, корзинчатых клетках), гиппокампа (в корзинчатых клетках), в обонятельной луковице и черной субстанции.

Идентификация ГАМК-цепей мозга трудна, так как ГАМК - обычный участник метаболизма в ряде тканей организма. Метаболическая ГАМК не используется как медиатор, хотя в химическом отношении их молекулы одинаковы. ГАМК определяется по ферменту декарбоксилазы. Метод основан на получении у животных антител к декарбоксилазе (антитела экстрагируют, метят и вводят в мозг, где они связываются с декарбоксилазой).

Другим известным тормозным медиатором является глицин. Глицинергические нейроны находятся главным образом в спинном и продолговатом мозге. Считают, что эти клетки выполняют роль тормозных интернейронов.

Ацетилхолин - один из первых изученных медиаторов. Он чрезвычайно широко распространен в нервной периферической системе. Примером могут служить мотонейроны спинного мозга и нейроны ядер черепных нервов. Как правило, холинергические цепи в мозге определяют по присутствию фермента холинэстеразы. В головном мозге тела холинергических нейронов находятся в ядре перегородки, ядре диагонального пучка (Брока) и базальных ядрах. Нейроанатомы считают, что эти группы нейронов формируют фактически одну популяцию холинергических нейронов: ядро педнего мозга, nucleus basalis (оно расположено в базальной части переднего мозга) (рис. 2.19). Аксоны соответствующих нейронов проецируются к структурам переднего мозга, особенно в новую кору и гиппокамп. Здесь встречаются оба типа ацетилхолиновых рецепторов (мускариновые и никотиновые), хотя считается, что мускариновые рецепторы доминируют в более рострально распоженных мозговых структурах. По данным последних лет складывается впечатление, что ацетилхолиновая система играет большую роль в процессах, связанных с высшими интегративными функциями, которые требуют участия памяти. Например, показано, что в мозге больных, умерших от болезни Альцгеймера, наблюдается массивная утрата холинергических нейронов в nucleus basalis.

Межклеточное взаимодействие реализуется не только с помощью хорошо изученных медиаторов, но и с помощью многочисленных веществ, которые в низких концентрациях изменяют внутриклеточные биохимические процессы в нейронах, активируют глиальные клетки, изменяют реакцию нейрона на медиатор. Все эти вещества принято называть «информационными субстанциями». Химическая передача сигналов в нервной системе может происходить как по «анатомическому адресу» (реализуется в синапсах с помощью классических медиаторов) так и по «химическому адресу». В последнем случае клетки синтезируют и выделяют в межклеточную жидкость или кровь различные информационные субстанции, направляющиеся путем медленного диффузного перемещения к клеткам-мишеням, которые могут находиться на значительном расстоянии от места синтеза вещества.

Изучение медиаторных процессов входит в круг задач нейрохимии, которая в последние десятилетия добилась значительных успехов в понимании глубинных механизмов работы нервной системы в норме и патологии. Достижениия нейрохимии легли в основу развития нейро- и психофармакологии, нейро-и психоэндокринологии.

Информационные субстанции нервной системы можно классифицировать по разным признакам. Мы ограничимся разделением их на две группы: 1) классические медиаторы, выделяющиеся в пресинаптическом окончании и непосредственно передающие возбуждение в синапсе и 2) модуляторы , или регуляторные пептиды, изменяющие реакцию клетки на классические медиаторы или другие формы активности нервных клеток (хотя некоторые из них могут выполнять и передаточную функцию).

Классические медиаторы

Ацетилхолин (АХ) – один из первых изученных медиаторов. Его молекула состоит из азотсодержащего вещества холина и остатка уксусной кислоты. АХ работает в качестве медиатора в трех функциональных блоках нервной системы: 1) в нервно-мышечных синапсах скелетной мускулатуры (синтезируется в мотонейронах); 2) в периферической части ВНС (синтезируется в преганглионарных симпатических и парасимпатических нейронах, постганглионарных парасимпатических нейронах); 3) в больших полушариях, где холинэргические системы представлены нейронами некоторых ретикулярных ядер моста, интернейронами полосатого тела, нейронами ядер прозрачной перегородки. Аксоны этих нейронов направляются к различным структурам переднего мозга, в первую очередь, в новую кору и гиппокамп. Результаты последних исследований показывают, что холинэргическая система играет важную роль в процессах обучения и памяти. Так, в мозге умерших людей, страдавших болезнью Альцгеймера, наблюдается резкое снижение количества холинэргических нейронов в больших полушариях.



Синаптические рецепторы к АХ разделяются на никотиновые (возбуждаются АХ и никотином) и мускариновые (возбуждаются АХ и токсином мухомора мускарином). Никотиновые рецепторы открывают натриевые каналы и приводят к формированию ВПСП. Они расположены в нервно-мышечных синапсах скелетной мускулатуры, в вегетативных ганглиях и немного – в ЦНС. Наиболее чувствительны к никотину вегетативные ганглии, поэтому первые попытки курения приводят к выраженным вегетативным проявлениям – перепады артериального давления, тошнота, головокружение. По мере привыкания сохраняются в основном симпатическое действие. Никотиновые рецепторы присутствуют и в ЦНС, благодаря чему никотин, являясь психоактивным веществом, оказывает центральное стимулирующее действие. Антагонисты никотиновых рецепторов – соединения, подобные яду кураре - действуют в основном на нервно-мышечные синапсы, вызывая паралич скелетной мускаулатуры. Мускариновые рецепторы расположены в синапсах вегетативных постганглионарных (в основном парасимпатических) нейронов, в ЦНС. Их возбуждение может открывать как калиевые, так и натриевые каналы. Классический антагонист мускариновых рецепторов – атропин, вызывающий симпатические эффекты, двигательное и речевое возбуждение, галлюцинации. Инактивация АХ осуществляется ферментом ацетилхолинэстеразой. Обратимые блокаторы этого фермента улучшают нервно-мышечную передачу и используются в неврологической практике, необратимые – вызывают опасные отравления (хлорофос, нервно-паралитические газы).

Биогенные амины (БА) - группа медиаторов, имеющих в своем составе аминогруппу. Разделяются на катехоламины (норадреналин, дофамин) и серотонин.

Норадреналин (НА) в периферической НС синтезируется в нейронах симпатических ганглиев, в ЦНС – в голубом пятне и межножковом ядре среднего мозга. Аксоны клеток этих ядер широко распространены в различных структурах головного и спинного мозга. Возбуждение адренорецепторов может увеличивать как натриевую проводимость (ВПСП), так и калиевую (ТПСП). Агонистами НА-эргических синапсов являются эфедрин и др. средства от бронхиальной астмы, сосудосуживающие препараты - нафтизин, галазолин. Антагонисты – средства, использующиеся для снижения артериального давления (адреноблокаторы).

В ЦНС эффектами НА являются:

Повышение уровня бодрствования;

Тормозная регуляция сенсорных потоков, обезболивание;

Повышение уровня двигательной активности;

Повышение агрессивности, стенические эмоции во время стрессовых реакций (азарт, удовольствие от риска, преодоления усталости). При некоторых формах депрессии отмечается снижение уровня НА, а многие антидепрессанты стимулируют его образование.

Дофамин (ДА) непосредственный предшественник НА. Функционирует в ЦНС, где выделяют три основных ДА-эргических системы:

1) черная субстанция – полосатое тело. Основная функция этой системы – поддержание общего уровня двигательной активности, обеспечение точности выполнения моторных программ, устранение лишних движений. Недостаточность дофамина в этой системе ведет к развитию паркинсонизма;

2) ретикулярные ядра покрышки среднего мозга – КБП (новая, старая, древняя). Регулирует эмоциональные и мыслительные процессы, «отвечает» за положительные эмоции, которые чаще всего связаны с удовольствием от движений, обеспечивает упорядоченность и системность мыслительных процессов. Недостаточность в этой системе может приводить к развитию депрессий, избыточная активность (в частности, большое количество ДА рецепторов) наблюдается при некоторых формах шизофрении;

3) гипоталамус - гипофиз. Участвует в регуляции гипоталамо–гипофизарной системы (в частности, ДА тормозит секрецию пролактина), вызывает торможение центров голода, агрессивности, полового поведения, возбуждение центра удовольствия.

Средства, блокирующие рецепторы к дофамину, используются в медицине в качестве нейролептиков. Такие опасные психоактивные вещества, как психостимуляторы и кокаин, усиливают действие ДА (увеличивают выброс или блокируют обратный захват медиатора).

Серотонин относится к той же химической группе, что и катехоламины. Серотонин является не только медиатором, но и тканевым гормоном с многочисленными функциями: вызывает изменение просвета кровеносных сосудов, усиливает моторику ЖКТ, тонус матки, бронхиальных мышц, выделяется из тромбоцитов при ранении сосудов и способствует остановке кровотечения, является одним из факторов воспаления. В ЦНС синтезируется в ядрах шва. Аксоны серотонинэргических нейронов заканчиваются в полосатом теле, новой коре, структурах лимбической системы, ядрах среднего мозга, спинном мозге. Из этого следует, что серотонин влияет практически на все функции мозга. Действительно, установлено участие серотонина в регуляции уровня бодрствования, работе сенсорных систем, обучении, эмоционально-мотивационных процессах. В системе сон-бодрствование серотонин конкурирует с катехоламинами, вызывая снижение уровня бодрствования (ядра шва – один из центров сна). В сенсорных системах серотонин оказывает тормозящее действие, чем объясняется его противоболевой эффект (в задних рогах спинного мозга активирует тормозные нейроны). В корковых зонах сенсорных систем ограничивает избыточное распространение сенсорных сигналов, обеспечивая «фокусировку» сигнала. Блокада этого механизма может сильно исказить процессы восприятия, вплоть до возникновения иллюзий и галлюцинаций. Сходное действие серотонин оказывает в ассоциативных зонах коры, «организуя» интегративные процессы, в частности, мышление. Участвует в процессах обучения, причем в большей степени, если выработка рефлексов связана с положительным подкреплением (вознаграждение), тогда как норадреналин способствует закреплению тех форм поведения, которые направлены на избегание наказания. В эмоционально-мотивационной сфере серотонин оказывает успокаивающее действие (снижение тревожности, аппетита). Представляет интерес одна из групп веществ, блокирующих серотониновые рецепторы - производные лизергиновой кислоты (алкалоиды спорыньи). Используются в медицине (стимуляция матки, при мигрени) и являются действующим началом галлюциногенов (ЛСД – синтетический галлюциноген).

Инактивация серотонина, как и других биогенных аминов, происходит под действием фермента моноаминоксидазы (МАО). Интересно, что такая психологическая особенность людей, как стремление к поиску новых сильных ощущений, может быть связана с малым количеством этого фермента в ЦНС. Ингибиторы МАО или ингибиторы обратного захвата серотонина используются в медицине в качестве антидептессантов.

Аминокислотные медиаторы (АК). Более 80% нейронов ЦНС используют аминокислотные медиаторы. АК достаточно просты по своему составу, характеризуются большей специфичностью синаптических эффектов (имеют либо возбуждающие – глутаминовая и аспарагиновая кислоты, либо тормозные свойства – глицин и ГАМК).

Глутаминовая кислота (ГК) основной возбуждающий медиатор ЦНС. Имеется в любой белковой пище, но пищевая ГК в норме очень плохо проникает через гематоэнцефалический барьер, что защищает мозг от сбоев в его деятельности. Практически вся ГК, необходимая мозгу, синтезируется в нервной ткани. Однако при употреблении в пищу большого количества солей ГК может наблюдаться ее нейротропное действие: происходит активация ЦНС, и это используют в клинике, назначая глутамат в таблетках (2-3г) при задержках психического развития или истощении нервной системы. Глутамат широко применяется в пищевой промышленности как вкусовая добавка, и входит в состав пищевых концентратов, колбасных изделий и пр. (имеет мясной вкус). При одномоментном употреблении с пищей 10-30г глутамата может произойти избыточное возбуждение сосудодвигательного центра, повышается АД, учащается пульс. Это опасно для здоровья, особенно для детей и людей, страдающих сердечно-сосудистыми заболеваниями. Антагонисты ГК, например калипсол (кетамин), используются в клинике как мощные анальгетики и средства для быстрого наркоза. Побочный эффект – появление галлюцинаций. Некоторые вещества этой группы являются сильными галлюциногенными наркотиками.

Инактивация ГК происходит путем захвата астроцитами, где происходит ее превращение в аспарагиновую кислоту и ГАМК.

Гамма-аминомасляная (ГАМК) непищевая АК (полностью синтезируется в организме). Играет важную роль во внутриклеточном метаболизме; лишь небольшая часть ГАМК выполняет медиаторные функции. Является медиатором мелких тормозных нейронов, широко распространенных в ЦНС. Этот медиатор используют также клетки Пуркинье, нейроны бледного шара. На постсинаптической мембране открывает Ка + и Cl - - каналы. У рецепторов к ГАМК сложная структура, они имеют центры, связывающиеся с другими веществами, что приводит к изменению эффектов медиатора. Такие вещества используются как седативные и транквилизаторы, снотворные, противоэпилептические, средства для наркоза. Иногда все эти эффекты может вызывать одно и то же вещество в зависимости от дозы. Например, барбитураты, которые используются для наркоза (гексенал), при тяжелых формах эпилепсии (бензонал, фенобарбитал). В меньших дозах действуют как снотворные, но используются ограниченно, поскольку нарушают нормальную структуру сна (укорачивают парадоксальную фазу), после такого сна долго сохраняется заторможенность и нарушение координации движений. Длительное применение барбитуратов вызывает наркотическую зависимость. Алкоголь усиливает действие барбитуратов, легко возникает передозировка, приводящая к остановке дыхания. Другая группа агонистов ГАМК- бензодиазепины. Они действующие более избирательно и мягко, в качестве снотворных увеличивают глубину и продолжительность сна (реланиум, феназепам). В больших количествах также вызывают заторможенность после сна. Агонисты ГАМК используются как транквилизаторы (успокаивающие) или анксиолитики (снижающие тревожность). Возможно формирование зависимости. Лекарства на основе ГАМК используются в качестве мягких психостимуляторов при возрастных изменениях, сосудистых заболеваниях, умственной отсталости, после инсультов и травм. Они действуют за счет улучшения работы интернейронов и относятся к группе ноотропов, улучшающих обучение и память, повышающие устойчивость ЦНС к неблагоприятным воздействиям, восстанавливающие нарушенные функции мозга (аминалон, пантогам, ноотропил). Как и все нейротропные препараты, должны применяться только по строгим медицинским показаниям.

Глицин тормозной медиатор, но менее распространенный, чем ГАМК. Глицинэргические нейроны в основном тормозят мотонейроны и предохраняют их от перевозбуждения. Антагонистом глицина является стрихнин (яд, вызывающий судороги и удушье). Глицин используют как успокаивающее и улучшающее мозговой метаболизм средство.

Модулирующие медиаторы

Пурины – вещества, содержащие аденозин. Влияют на пресинаптическую мембрану, уменьшая выброс медиатора. Такое же действие оказывают АТФ, АДФ, АМФ. Физиологическая роль заключается в защите нервной системы от истощения. Если заблокировать эти рецепторы, активируются многие медиаторные системы, нервная система будет работать «до упора». Таким действием обладают кофеин, теобромин, теофиллин (кофе, чай, какао, орехи кола). При большой дозе кофеина быстро истощаются запасы медиаторов, наступает «запредельное торможение». При постоянном введении кофеина количество пуриновых рецепторов увеличивается, поэтому отказ от кофе вызывает депрессию и сонливость.

Пептидные медиаторы – вещества, состоящие из коротких аминокислотных цепочек.

Вещество Р (от англ.powder - порошок: его выделили из сухого порошка спинного мозга коров). Вырабатывается в нейронах спинальных ганглиев, участвующих в проведении болевых импульсов. В нейронах задних рогов спинного мозга вещество Р работает вместе с глутаминовой кислотой как классический медиатор, передавая болевые сигналы. Обнаруживается в чувствительных окончаниях кожи, откуда выделяется при повреждении, вызывая воспалительный процесс. Вырабатывается также некоторыми интернейронами ЦНС, выполняя функцию модулирующего медиатора.

Опиоидные пептиды вещества, подобные опиуму. Опиум – алкалоид снотворного мака. Действующее вещество - морфин, вызывающий обезболивание (через задние рога спинного мозга), эйфорию (стимуляция центра удовольствия гипоталамуса), засыпание (торможение стволовых структур). Передозировка ведет к торможению дыхательного центра. Такое быстрое и сильное действие морфина связано с тем, что в ЦНС имеются рецепторы к опиатам, которые были обнаружены в 70-х годах 20 века. Позже были открыты несколько разновидностей опиоидных пептидов. Основной механизм их действия – пресинаптическое торможение выделения медиаторов. Биохимические процессы в клетке очень быстро приспосабливаются к действию опиатов, и для достижения эффекта нужна все большая доза. При отказе от морфина нейроны имеют «запас» веществ, облегчающих передачу сигналов, поэтому болевые и другие импульсы проводятся очень интенсивно, что обусловливает наступление «ломки» при абстинентном синдроме. Морфин с XIX века широко применяли для обезболивания, особенно во время войн в госпиталях. Побочным эффектом было формирование зависимости. Синтез героина стал результатом попыток создать менее опасное обезболивающее средство. Он был в 10 раз активнее морфина, но вскоре оказалось, что скорость привыкания к героину еще выше, чем к морфину, и в 20–е годы героин был запрещен для применения, перейдя в разряд наркотиков. Морфиноподобные препараты применяются для обезболивания в самых тяжелых случаях (наркотические анальгетики). Кроме морфина, используется кодеин (тоже алкалоид мака), обладающий противокашлевым эффектом.

Кроме перечисленных, функции модулирующих медиаторов выполняют некоторые гипоталамические, гипофизарные и тканевые гормоны. Например, тиролиберин вызывает эмоциональную активацию, повышение уровня бодрствования, стимулирует дыхательный центр. Холецистокинин – вызывает тревожность и страх. Вазопрессин – активирует запоминание. АКТГ – стимулирует внимание и улучшает обменные процессы в нервных клетках. Существуют нейропептиды, избирательно управляющие половым поведением, пищевой мотивацией, терморегуляцией. Все они образуют сложную иерархическую систему взаимодействий, тонко регулирующую работу ЦНС.

Лекция 5. ОСОБЕННОСТИ МОЗГОВОГО КРОВООБРАЩЕНИЯ. ЛИКВОР И ГЕМАТОЭНЦЕФАЛИЧЕСКИЙ БАРЬЕР

Кровоснабжение головного и спинного мозга

Работа мозга связана с большими энергетическими затратами. Головной мозг составляет около 2 % от массы тела, однако 15 % крови, выбрасываемой сердцем в аорту за одно сокращение, поступает в сосуды головного мозга. Нарушение мозгового кровообращения неизбежно сказывается на функционировании нервной системы.

Головной мозг снабжается артериальной кровью из двух основных источников – внутренних сонных артерий, отходящих от общих сонных артерий, берущих начало от дуги аорты, и от позвоночных артерий, отходящих от подключичных артерий. Общие сонные и подключичные артерии берут начало от дуги аорты.

Внутренние сонные артерии – крупные сосуды, их диаметр – около 1 см. Они входят в полость черепа через яремные отверстия в височных костях, проходят через твердую мозговую оболочку, разветвляются и кровоснабжают глазные яблоки, зрительные тракты, промежуточный мозг, базальные ядра, лобные теменные, височные, островковые доли больших полушарий. Наиболее крупные ветви – передняя и средняя мозговые артерии .

Позвоночные артерии начинаются от подключичных артерий на уровне 7 шейного позвонка, идут вверх через поперечные отверстия шейных позвонков и проникают в полость черепа через большое затылочное отверстие. Ветви этих артерий кровоснабжают спинной мозг, продолговатый мозг и мозжечок, а также оболочки мозга. У заднего края моста правая и левая позвоночные артерии соединяются, образуя базиллярную артерию, проходящую в одноименной борозде на вентральной поверхности моста. У переднего края моста базиллярная артерия делится на две задние мозговые артерии. Ее ветви кровоснабжают мост, мозжечок, продолговатый мозг, средний мозг, частично промежуточный мозг, затылочные доли больших полушарий.

На основании головного мозга ветви внутренней сонной артерии и базиллярной артерии соединяются между собой, образуя артериальный (виллизиев) круг большого мозга . Этот круг располагается в подпаутинном пространстве и охватывает зрительный перекрест и гипоталамус. Благодаря этому кругу уравниваются потоки крови к различным частям мозга, даже если один из сосудов (сонная или позвоночная артерия) пережимается или недостаточно развит.

Спинной мозг кровоснабжается ветвями позвоночных артерий (шейные сегменты), а также ветвями грудной и брюшной части аорты.

Ветви мозговых артерий расположены в мягкой мозговой оболочке, которую также называют сосудистой, и вместе с ее волокнами проникают в ткань мозга, где разветвляются на мелкие артериолы и капилляры.

Капилляры – это мельчайшие сосуды, стенка которых состоит из одного слоя клеток. Через эту стенку вещества, растворенные в крови, проникают в ткань мозга, а продукты мозгового метаболизма переходят в кровь. Капилляры собираются в венулы, затем в вены, лежащие в сосудистой оболочке мозга. Тонкие кровеносные сосуды мягкой мозговой оболочки проникают в желудочки мозга, где образуют сосудистые сплетения. В конечном итоге венозная кровь оттекает в синусы твердой мозговой оболочки, откуда попадает в крупные вены большого круга кровообращения.