Информатика - система счисления. Виды систем счисления

Изучая кодировки, я понял, что недостаточно хорошо понимаю системы счислений. Тем не менее, часто использовал 2-, 8-, 10-, 16-ю системы, переводил одну в другую, но делалось все на “автомате”. Прочитав множество публикаций, я был удивлен отсутствием единой, написанной простым языком, статьи по столь базовому материалу. Именно поэтому решил написать свою, в которой постарался доступно и по порядку изложить основы систем счисления.

Введение

Система счисления - это способ записи (представления) чисел.

Что под этим подразумевается? Например, вы видите перед собой несколько деревьев. Ваша задача - их посчитать. Для этого можно - загибать пальцы, делать зарубки на камне (одно дерево - один палец\зарубка) или сопоставить 10 деревьям какой-нибудь предмет, например, камень, а единичному экземпляру - палочку и выкладывать их на землю по мере подсчета. В первом случае число представляется, как строка из загнутых пальцев или зарубок, во втором - композиция камней и палочек, где слева - камни, а справа - палочки

Системы счисления подразделяются на позиционные и непозиционные, а позиционные, в свою очередь, - на однородные и смешанные.

Непозиционная - самая древняя, в ней каждая цифра числа имеет величину, не зависящую от её позиции (разряда). То есть, если у вас 5 черточек - то число тоже равно 5, поскольку каждой черточке, независимо от её места в строке, соответствует всего 1 один предмет.

Позиционная система - значение каждой цифры зависит от её позиции (разряда) в числе. Например, привычная для нас 10-я система счисления - позиционная. Рассмотрим число 453. Цифра 4 обозначает количество сотен и соответствует числу 400, 5 - кол-во десяток и аналогично значению 50, а 3 - единиц и значению 3. Как видим - чем больше разряд - тем значение выше. Итоговое число можно представить, как сумму 400+50+3=453.

Однородная система - для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд - 0, 2-й - 5, 3-й - 4), а 4F5 - нет, поскольку символ F не входит в набор цифр от 0 до 9.

Смешанная система - в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример - система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.

Непозиционные системы

Как только люди научились считать - возникла потребность записи чисел. В начале все было просто - зарубка или черточка на какой-нибудь поверхности соответствовала одному предмету, например, одному фрукту. Так появилась первая система счисления - единичная.
Единичная система счисления
Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.
Но эта система обладает явными неудобствами - чем больше число - тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав.

Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.

Древнеегипетская десятичная система
В Древнем Египте использовались специальные символы (цифры) для обозначения чисел 1, 10, 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 . Вот некоторые из них:

Почему она называется десятичной? Как писалось выше - люди стали группировать символы. В Египте - выбрали группировку по 10, оставив без изменений цифру “1”. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ - представление числа 10 в какой-то степени.

Числа в древнеегипетской системе счисления записывались, как комбинация этих
символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Примером может служить число 345:

Вавилонская шестидесятеричная система
В отличии от египетской, в вавилонской системе использовалось всего 2 символа: “прямой” клин - для обозначения единиц и “лежачий” - для десятков. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. В качестве примера возьмем число 32:

Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения - в позиционной с основанием 60. Число 92:

Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:

Теперь число 3632 следует записывать, как:

Шестидесятеричная вавилонская система - первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени - час состоит из 60 минут, а минута из 60 секунд.

Римская система
Римская система не сильно отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления - это набор стоящих подряд цифр.

Методы определения значения числа:

  1. Значение числа равно сумме значений его цифр. Например, число 32 в римской системе счисления имеет вид XXXII=(X+X+X)+(I+I)=30+2=32
  2. Если слева от большей цифры стоит меньшая, то значение равно разности между большей и меньшей цифрами. При этом, левая цифра может быть меньше правой максимум на один порядок: так, перед L(50) и С(100) из «младших» может стоять только X(10), перед D(500) и M(1000) - только C(100), перед V(5) - только I(1); число 444 в рассматриваемой системе счисления будет записано в виде CDXLIV = (D-C)+(L-X)+(V-I) = 400+40+4=444.
  3. Значение равно сумме значений групп и цифр, не подходящих под 1 и 2 пункты.
Помимо цифирных, существуют и буквенные (алфавитные) системы счисления, вот некоторые из них:
1) Славянская
2) Греческая (ионийская)

Позиционные системы счисления

Как упоминалось выше - первые предпосылки к появлению позиционной системы возникли в древнем Вавилоне. В Индии система приняла форму позиционной десятичной нумерации с применением нуля, а у индусов эту систему чисел заимствовали арабы, от которых её переняли европейцы. По каким-то причинам, в Европе за этой системой закрепилось название “арабская”.
Десятичная система счисления
Это одна из самых распространенных систем счисления. Именно её мы используем, когда называем цену товара и произносим номер автобуса. В каждом разряде (позиции) может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.

Для примера возьмем число 503. Если бы это число было записано в непозиционной системе, то его значение равнялось 5+0+3 = 8. Но у нас - позиционная система и значит каждую цифру числа необходимо умножить на основание системы, в данном случае число “10”, возведенное в степень, равную номеру разряда. Получается, значение равно 5*10 2 + 0*10 1 + 3*10 0 = 500+0+3 = 503. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Таким образом, 503 = 503 10 .

Помимо десятичной системы, отдельного внимания заслуживают 2-, 8-, 16-ая системы.

Двоичная система счисления
Эта система, в основном, используется в вычислительной технике. Почему не стали использовать привычную нам 10-ю? Первую вычислительную машину создал Блез Паскаль, использовавший в ней десятичную систему, которая оказалась неудобной в современных электронных машинах, поскольку требовалось производство устройств, способных работать в 10 состояниях, что увеличивало их цену и итоговые размеры машины. Этих недостатков лишены элементы, работающие в 2-ой системе. Тем не менее, рассматриваемая система была создана за долго до изобретения вычислительных машин и уходит “корнями” в цивилизацию Инков, где использовались кипу - сложные верёвочные сплетения и узелки.

Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа (цифры): 0 и 1. В каждом разряде допустима только одна цифра - либо 0, либо 1.

Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Для того, чтобы перевести из 2-й в 10-ю необходимо умножить каждую цифру двоичного числа на основание “2”, возведенное в степень, равную разряду. Таким образом, число 101 2 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 5 10 .

Хорошо, для машин 2-я система счисления удобнее, но мы ведь часто видим, используем на компьютере числа в 10-й системе. Как же тогда машина определяет какую цифру вводит пользователь? Как переводит число из одной системы в другую, ведь в её распоряжении всего 2 символа - 0 и 1?

Чтобы компьютер мог работать с двоичными числами (кодами), необходимо чтобы они где-то хранились. Для хранения каждой отдельной цифры применяется триггер, представляющий собой электронную схему. Он может находится в 2-х состояниях, одно из которых соответствует нулю, другое - единице. Для запоминания отдельного числа используется регистр - группа триггеров, число которых соответствует количеству разрядов в двоичном числе. А совокупность регистров - это оперативная память. Число, содержащееся в регистре - машинное слово. Арифметические и логические операции со словами осуществляет арифметико-логическое устройство (АЛУ). Для упрощения доступа к регистрам их нумеруют. Номер называется адресом регистра. Например, если необходимо сложить 2 числа - достаточно указать номера ячеек (регистров), в которых они находятся, а не сами числа. Адреса записываются в 8- и 16-ричной системах (о них будет рассказано ниже), поскольку переход от них к двоичной системе и обратно осуществляется достаточно просто. Для перевода из 2-й в 8-ю число необходимо разбить на группы по 3 разряда справа налево, а для перехода к 16-ой - по 4. Если в крайней левой группе цифр не достает разрядов, то они заполняются слева нулями, которые называются ведущими. В качестве примера возьмем число 101100 2 . В восьмеричной - это 101 100 = 54 8 , а в шестнадцатеричной - 0010 1100 = 2С 16 . Отлично, но почему на экране мы видим десятичные числа и буквы? При нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц). Программа драйвер клавиатуры и экрана обращается к кодовой таблице символов (например, Unicode, позволяющая закодировать 65536 символов), определяет какому символу соответствует полученный код и отображает его на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде, а программным способом преобразуются в изображения на экране.

Восьмеричная система счисления
8-я система счисления, как и двоичная, часто применяется в цифровой технике. Имеет основание 8 и использует для записи числа цифры от 0 до 7.

Пример восьмеричного числа: 254. Для перевода в 10-ю систему необходимо каждый разряд исходного числа умножить на 8 n , где n - это номер разряда. Получается, что 254 8 = 2*8 2 + 5*8 1 + 4*8 0 = 128+40+4 = 172 10 .

Шестнадцатеричная система счисления
Шестнадцатеричная система широко используется в современных компьютерах, например при помощи неё указывается цвет: #FFFFFF - белый цвет. Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны 10, 11, 12, 13, 14, 15 соответственно.

В качестве примера возьмем число 4F5 16 . Для перевода в восьмеричную систему - сначала преобразуем шестнадцатеричное число в двоичное, а затем, разбив на группы по 3 разряда, в восьмеричное. Чтобы преобразовать число в 2-е необходимо каждую цифру представить в виде 4-х разрядного двоичного числа. 4F5 16 = (100 1111 101) 2 . Но в 1 и 3 группах не достает разряда, поэтому заполним каждый ведущими нулями: 0100 1111 0101. Теперь необходимо разделить полученное число на группы по 3 цифры справа налево: 0100 1111 0101 = 010 011 110 101. Переведем каждую двоичную группу в восьмеричную систему, умножив каждый разряд на 2 n , где n - номер разряда: (0*2 2 +1*2 1 +0*2 0) (0*2 2 +1*2 1 +1*2 0) (1*2 2 +1*2 1 +0*2 0) (1*2 2 +0*2 1 +1*2 0) = 2365 8 .

Помимо рассмотренных позиционных систем счисления, существуют и другие, например:
1) Троичная
2) Четверичная
3) Двенадцатеричная

Позиционные системы подразделяются на однородные и смешанные.

Однородные позиционные системы счисления
Определение, данное в начале статьи, достаточно полно описывает однородные системы, поэтому уточнение - излишне.
Смешанные системы счисления
К уже приведенному определению можно добавить теорему: “если P=Q n (P,Q,n – целые положительные числа, при этом P и Q - основания), то запись любого числа в смешанной (P-Q)-ой системе счисления тождественно совпадает с записью этого же числа в системе счисления с основанием Q.”

Опираясь на теорему, можно сформулировать правила перевода из P-й в Q-ю системы и наоборот:

  1. Для перевода из Q-й в P-ю, необходимо число в Q-й системе, разбить на группы по n цифр, начиная с правой цифры, и каждую группу заменить одной цифрой в P-й системе.
  2. Для перевода из P-й в Q-ю, необходимо каждую цифру числа в P-й системе перевести в Q-ю и заполнить недостающие разряды ведущими нулями, за исключением левого, так, чтобы каждое число в системе с основанием Q состояло из n цифр.
Яркий пример - перевод из двоичной системы счисления в восьмеричную. Возьмем двоичное число 10011110 2 , для перевода в восьмеричное - разобьем его справа налево на группы по 3 цифры: 010 011 110, теперь умножим каждый разряд на 2 n , где n - номер разряда, 010 011 110 = (0*2 2 +1*2 1 +0*2 0) (0*2 2 +1*2 1 +1*2 0) (1*2 2 +1*2 1 +0*2 0) = 236 8 . Получается, что 10011110 2 = 236 8 . Для однозначности изображения двоично-восьмеричного числа его разбивают на тройки: 236 8 = (10 011 110) 2-8 .

Смешанными системами счисления также являются, например:
1) Факториальная
2) Фибоначчиева

Перевод из одной системы счисления в другую

Иногда требуется преобразовать число из одной системы счисления в другую, поэтому рассмотрим способы перевода между различными системами.
Преобразование в десятичную систему счисления
Имеется число a 1 a 2 a 3 в системе счисления с основанием b. Для перевода в 10-ю систему необходимо каждый разряд числа умножить на b n , где n - номер разряда. Таким образом, (a 1 a 2 a 3) b = (a 1 *b 2 + a 2 *b 1 + a 3 *b 0) 10 .

Пример: 101 2 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 5 10

Преобразование из десятичной системы счисления в другие
Целая часть:
  1. Последовательно делим целую часть десятичного числа на основание системы, в которую переводим, пока десятичное число не станет равно нулю.
  2. Полученные при делении остатки являются цифрами искомого числа. Число в новой системе записывают, начиная с последнего остатка.
Дробная часть:
  1. Дробную часть десятичного числа умножаем на основание системы, в которую требуется перевести. Отделяем целую часть. Продолжаем умножать дробную часть на основание новой системы, пока она не станет равной 0.
  2. Число в новой системе составляют целые части результатов умножения в порядке, соответствующем их получению.
Пример: переведем 15 10 в восьмеричную:
15\8 = 1, остаток 7
1\8 = 0, остаток 1

Записав все остатки снизу вверх, получаем итоговое число 17. Следовательно, 15 10 = 17 8 .

Преобразование из двоичной в восьмеричную и шестнадцатеричную системы
Для перевода в восьмеричную - разбиваем двоичное число на группы по 3 цифры справа налево, а недостающие крайние разряды заполняем ведущими нулями. Далее преобразуем каждую группу, умножая последовательно разряды на 2 n , где n - номер разряда.

В качестве примера возьмем число 1001 2: 1001 2 = 001 001 = (0*2 2 + 0*2 1 + 1*2 0) (0*2 2 + 0*2 1 + 1*2 0) = (0+0+1) (0+0+1) = 11 8

Для перевода в шестнадцатеричную - разбиваем двоичное число на группы по 4 цифры справа налево, затем - аналогично преобразованию из 2-й в 8-ю.

Преобразование из восьмеричной и шестнадцатеричной систем в двоичную
Перевод из восьмеричной в двоичную - преобразуем каждый разряд восьмеричного числа в двоичное 3-х разрядное число делением на 2 (более подробно о делении см. выше пункт “Преобразование из десятичной системы счисления в другие”), недостающие крайние разряды заполним ведущими нулями.

Для примера рассмотрим число 45 8: 45 = (100) (101) = 100101 2

Перевод из 16-ой в 2-ю - преобразуем каждый разряд шестнадцатеричного числа в двоичное 4-х разрядное число делением на 2, недостающие крайние разряды заполняем ведущими нулями.

Преобразование дробной части любой системы счисления в десятичную

Преобразование осуществляется также, как и для целых частей, за исключением того, что цифры числа умножаются на основание в степени “-n”, где n начинается от 1.

Пример: 101,011 2 = (1*2 2 + 0*2 1 + 1*2 0), (0*2 -1 + 1*2 -2 + 1*2 -3) = (5), (0 + 0,25 + 0,125) = 5,375 10

Преобразование дробной части двоичной системы в 8- и 16-ую
Перевод дробной части осуществляется также, как и для целых частей числа, за тем лишь исключением, что разбивка на группы по 3 и 4 цифры идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа.

Пример: 1001,01 2 = 001 001, 010 = (0*2 2 + 0*2 1 + 1*2 0) (0*2 2 + 0*2 1 + 1*2 0), (0*2 2 + 1*2 1 + 0*2 0) = (0+0+1) (0+0+1), (0+2+0) = 11,2 8

Преобразование дробной части десятичной системы в любую другую
Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в ноль и начать умножение получившегося числа на основание системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в ноль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль.

Для примера переведем 10,625 10 в двоичную систему:
0,625*2 = 1,25
0,250*2 = 0,5
0,5*2 = 1,0
Записав все остатки сверху вниз, получаем 10,625 10 = (1010), (101) = 1010,101 2

    Введение ……………………………………………………………………3

    Древнеегипетская десятичная непозиционная система ………………..4

    Числовая система индейцев Майя ……………………………………….4

    Вавилонская шестидесятеричная система ………………………………5

    Римская система ……………………………………………………………7

    Двенадцатеричная система счисления ……………………………………8

    Алфавитные системы счисления ………………………………………….9

    Десятичная система ……………………………………………………….10

    Двоичная система …………………………………………………………12

    Обозначения чисел ………………………………………………………14

    Заключение ………………………………………………………………15

    Список литературы ………………………………………………………16

Введение

Современный человек в повседневной жизни постоянно сталкивается с числами: мы запоминаем номера автобусов и телефонов, в магазине подсчитываем стоимость покупок, ведём свой семейный бюджет в рублях и копейках (сотых долях рубля) и т.д. Числа, цифры... они с нами везде. А что знал человек о числах несколько тысяч лет назад? Вопрос непростой, но очень интересный. Историки доказали, что и пять тысяч лет назад люди могли записывать числа и производить над ними арифметические действия. Конечно, принципы записи были совсем не такими, как сейчас. Но в любом случае число изображалось с помощью одного или нескольких символов.

Эти символы, участвующие в записи числа, в математике и информатике принять называть цифрами.

Но что же люди понимают тогда под словом "число"?

Первоначально понятие отвлечённого числа отсутствовало, число было "привязано" к тем конкретным предметам, которые пересчитывали. Отвлечённое понятие натурального числа появляется вместе с развитием письменности. Дробные же числа изобрели тогда, когда возникла необходимость производить измерения. Измерение, как известно, это сравнение с другой величиной того же рода, выбираемой в качестве эталона.

Эталон называется ещё единицей измерения. Понятно, что единица измерения не всегда укладывалась целое число раз в измеряемой величине. Отсюда и возникла практическая потребность ввести более "мелкие" числа, чем натуральные. Дальнейшее развитие понятия числа было обусловлено уже развитием математики.

Сегодня, в XI веке, для записи чисел человечество использует в основном десятичную систему счисления.

Древнеегипетская десятичная непозиционная система

В древнеегипетской системе счисления, которая возникла во второй половине третьего тысячелетия до н.э., использовались специальные цифры для обозначения чисел 1, 0, 10 2 ,10 3 , 10 4 , 10 5 , 10 6 , 10 7 . Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из них повторялась не более девяти раз.

Число 345 древние египтяне записывали так: ,
где - единицы, - десятки, - сотни, - тысячи.

В основе древнеегипетской системы счисления лежал простой принцип сложения, согласно которому значение числа равно сумме значений цифр, участвующих в его записи. Ученые относят древнеегипетскую систему счисления к десятичной непозиционной.

Числовая система индейцев Майя

"В письменности Майя, как и в других иероглифических системах письма, употребляются знаки фонетические (алфавитные и слоговые), идеографические (обозначающие целые слова) и ключевые (поясняющие значения слов, но не читающиеся). Один и тот же знак в разных сочетаниях может употребляться то как фонетический, то как ключевой, то как идеограмма..."

Юрий Кнорозов

Иероглифические символы чисел майя от 1 до 10.

Вавилонская шестидесятеричная система

Также далеко от наших дней, за две тысячи лет до н.э., в другой великой цивилизации - вавилонской - люди записывали цифры по-другому.

Числа в этой системе счисления составлялись из знаков двух видов: прямой клин служил для обозначения единиц, а лежачий клин - - для обозначения десятков. Число 32, например, записывали так: . Знаки и служили цифрами в этой системе. Число 60 снова обозначалось тем же знаком , что и 1, этим же знаком обозначались и числа 3600=60 2 , 216000=60 3 и все другие степени 60. Поэтому вавилонская система счисления получила название шестидесятеричной .

Значение числа определяли по значениям составляющих его цифр, но с учетом того, что цифры в каждом последующем разряде значили в 60 раз больше тех же цифр в предыдущем разряде.

Число 92=60+32 записывали так: , а число 444 в этой системе записи чисел имело вид
, так как 444=7 · 60+24.

Все числа от 1 до 59 вавилонян записывали в десятичной непозиционной системе, а число в целом - в позиционной системе с основанием 60.

Запись числа у вавилонян была неоднозначной, так как не существовало цифры для обозначения нуля. Запись числа 92, приведенная выше, могла обозначать не только 92=60+32, но и, 3632=3600+32=60 2 +32. Для определения абсолютного значения числа требовались дополнительные сведения. Впоследствии вавилоняне ввели специальный символ для обозначения пропущенного шестидесятеричного разряда - , что соответствует появлению цифры 0 в записи десятичного числа.

Число 3632 теперь нужно было записывать так: . Но в конце числа этот символ все же не ставился, т.е. этот символ все же не был цифрой "ноль" в нашем понимании, и опять же требовались дополнительные сведения для того, чтобы отличить 1 от 60, от 3600 и т.д.

Таблицу умножения вавилоняне никогда не запоминали, т.к. это было практически невозможно. При вычислениях использовались готовые таблицы умножения.

Шестидесятеричная вавилонская система - первая известная нам система счисления, частично основанная на позиционном принципе.

Мнения историков по поводу того, как именно возникла эта система счисления, расходятся. Существуют две гипотезы. Первая исходит из того, что произошло слияние двух племён, одно из которых пользовалось шестеричной, другое - десятичной.

Шестидесятеричная система счисления в данном случае могла возникнуть в результате своеобразного политического компромисса. Суть второй гипотезы в том, что древние вавилоняне считали продолжительность года равной 360 суткам, что естественно связано с числом 60. Отголоски использования этой системы счисления дошли до наших дней. Например, 1 час = 60 минутам, 1 градус = 60 минутам. В целом шестидесятеричная система счисления громоздка и неудобна.

Система вавилонян сыграла большую роль в развитии математики и астрономии, ее следы сохранились и до наших дней. Так, мы до сих пор делим час на 60 минут, а минуты на 60 секунд. Следуя примеру вавилонян, мы и окружность делим на 360 частей (градусов).

Римская система

Знакомая нам римская система не слишком принципиально отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно, являющиеся цифрами этой системы счисления.

Число в римской системе счисления обозначается набором стоящих подряд цифр. Значение числа равно:

1) сумме значений идущих подряд нескольких одинаковых цифр (назовем их группой первого вида);

2) разности значений двух цифр, если слева от большей цифры стоит меньшая. В этом случае от значения большей цифры отнимается значение меньшей цифры. Вместе они образуют группу второго вида. Заметим, что левая цифра может быть меньше правой максимум на один порядок: так, перед L (50) и C (100) из "младших" может стоять только X (10), перед D (500) и M(1000) - только C (100), перед V (5) - только I (1);

3) сумме значений групп и цифр, не вошедших в группы первого или второго вида.

Например, IX обозначает 9, XI обозначает11. Десятичное число 28 представляется следующим образом: XXVIII=10+10+5+1+1+1, а десятичное число 99 имеет вот такое представление: IC= -1+100.

Число 32 в римской системе счисления имеет вид XXXII=(X+X+X)+(I+I)=30+2 (две группы первого вида).

Число 444, имеющее в своей десятичной записи 3 одинаковые цифры, в римской системе счисления будет записано в виде CDXLIV=(D-C)+(L-X)+(V-I)=400+40+4 (три группы второго вида).

Число 1974 в римской системе счисления будет иметь вид MCMLXXIV=M+(M-C)+L+(X+X)+(V-I)=1000+900+50+20+4 (наряду с группами обоих видов в формировании числа участвуют отдельные "цифры"). Вы видели подобные обозначения года выпуска в титрах голливудских фильмов.

Римская система счисления сегодня используется в основном для обозначения знаменательных и юбилейных дат, разделов и глав в книгах.

Двенадцатеричная система счисления

Довольно широкое распространение имела двенадцатеричная система счисления.

Происхождение её тоже связано со счетом на пальцах. Считали большим пальцем руки фаланги остальных четырёх пальцев: всего их 12. Элементы двенадцатеричной системы счисления сохранились в Англии в системе мер (1 фут = 12 дюймам) и в денежной системе (1 шиллинг = 12 пенсам). Нередко и мы сталкиваемся в быту с двенадцатеричной системой счисления: чайные и столовые сервизы на 12 персон, комплект носовых платков - 12 штук.

Числа в английском языке от одного до двенадцати имеют свое название, последующие числа являются составными.

Для чисел от 13 до 19 -- окончание слов -- teen. Например, 15 -- fiveteen.

Алфавитные системы счисления

Алфавитные системы счисления представляют особую группу. В них для записи чисел использовался буквенный алфавит. Примером алфавитной системы счисления является славянская. У одних славянских народов числовые значения букв устанавливались в порядке следования букв славянского алфавита, у других, в частности у русских, роль цифр играли не все буквы, а только те, которые имеются в греческом алфавите.

Над буквой, обозначающей цифру, ставился специальный знак -- "титло" (отсюда - число). Славянская система счисления сохранилась в богослужебных книгах.

Алфавитная система счисления была распространена у древних армян, грузин, греков (ионическая система счисления), арабов, евреев и других народов Ближнего Востока.

Десятичная система

В древнем Китае, Индии и некоторых других странах существовали системы записи чисел, построенные на мультипликативном принципе. В таких системах для записи одинакового числа единиц, десятков, сотен и т.д. применяются одни и те же символы, но после каждого символа пишется название соответствующего разряда. Так, если десятки обозначить Х, а сотни Y, то запись числа 548 схематично будет выглядеть: 5Y4Х8. На аналогичном принципе основаны наши счеты: одно и то же количество косточек означает число десятков, сотен, тысяч и т.д., в зависимости от того, в каком ряду они расположены. Именно такой способ счета применялся при счете "числами-совокупностями". Постепенно заметили, что даже если не указывать имена разрядов, то число все равно можно прочитать, т.к. у каждого разряда есть свое "посадочное место" (позиция). Но при записи чисел требовался символ для обозначения пустой позиции.

Современная десятичная система счисления возникла примерно в V веке до н.э. в Индии. Возникновение этой системы стало возможным после величайшего открытия - цифры "0" для обозначения отсутствующей величины.

Как мы уже знаем, в поздних вавилонских текстах стал появляться такой знак, однако в конце числа его никогда не ставили. Примерно во II веке до н.э. с многовековыми астрономическими наблюдениями вавилонян познакомились греческие ученые. Вместе с их вычислительными таблицами они переняли и вавилонскую систему счисления, но числа от 1 до 59 они записывали не с помощью клиньев, а в своей алфавитной нумерации. Но самое замечательное было то, что для обозначения нулевого значения разряда греческие астрономы стали использовать символ "0" (первая буква греческого слова Ouden - ничто).

Индийцы, владевшие уже мультипликативным принципом записи чисел, между II и VI веками н.э. познакомились с греческой астрономией. Это видно из того, что они переняли общие теоретические положения этой науки и многие греческие термины. Одновременно они познакомились с шестидесятеричной системой и круглым греческим нулем. Индийцы соединили принципы греческой нумерации со своей десятичной мультипликативной системой. Это и был завершающий шаг в создании позиционной десятичной системы счисления.

Индийская нумерация пришла сначала в арабские страны, а затем и в Западную Европу. О ней подробно рассказал среднеазиатский математик Аль Хорезми. Простые и удобные правила сложения и вычитания сколь угодно больших чисел, записанных в позиционной системе, сделали ее особенно популярной. А так как труд Аль Хорезми был написан на общем для мусульманского мира языке - арабском, то за индийской нумерацией в Европе закрепилось неправильное название - "арабская". Но сами арабы именуют цифры индийскими, а арифметику, основанную на десятичной системе - индийским счетом.

С начала XII века десятичная система получила распространение во всей Европе. Будучи проще и удобнее остальных систем, она достаточно быстро вытеснила все другие способы записи чисел.

В России, как уже говорилось, в старину употреблялась алфавитная система. Но и здесь новая нумерация быстро вошла в употребление. При Петре I индийские цифры уже вытесняют на монетах славянские, а позднее славянские исчезают совсем.

Двоичная система

Из всех позиционных систем счисления наибольшее распространение после десятичной получила двоичная система счисления. Двоичная система проста, так как для представления информации в ней используются всего два состояния или две цифры. Такое представление информации принято называть двоичным кодированием.

Представление информации в двоичной системе использовалось человеком с давних времен. Так жители островов Полинезии передавали необходимую информацию при помощи барабанов - чередованием звонких и глухих ударов. Звук над поверхностью воды распространялся на достаточно большое расстояние. Таким образом "работал" полинезийский "телеграф". В телеграфе XIX - XX веков информация передавалась с помощью азбуки Морзе - в виде последовательности из точек и тире.

Двоичная система счисления явилась одним из истоков произошедшей в ХХ веке грандиозной компьютерной революции. Технически две цифры воспроизвести просто: 1 - ток в полупроводниковом элементе проходит, 0 - ток не проходит. Состояния элемента "ток проходит" и "ток не проходит" могут сменять друг друга за очень короткие промежутки времени - миллионные доли секунды. Это позволяет производить арифметические действия над двоичными числами с неимоверной скоростью.

По сравнению с громоздкими таблицами умножения и сложения чисел в десятичной системе таблицы сложения и умножения двоичных чисел миниатюрны.

Более того, умножение на 1 вообще не меняет числа. Поэтому, чтобы перемножить два многоразрядных двоичных числа, достаточно несколько раз сдвинуть верхний сомножитель на соответствующее количество разрядов влево и суммировать все полученные числа.

Следует отметить, что двоичная система издавна была предметом пристального внимания многих ученых. Великий немецкий математик Г.В.Лейбниц, создавший в 1692 году первую механическую счетную машину, выполнявшую все арифметические операции, видел в двоичной системе "…прообраз творения. Ему представлялось, что единица представляет божественное начало, а ноль - небытие, и что высшее существо создает все сущее из небытия точно таким же образом, как единица с помощью нуля выражает все числа".

Некоторый недостаток двоичной системы состоит в том, что поскольку основание системы мало, для записи даже не очень больших чисел приходится использовать много знаков (1000 = (1111101000)).Однако этот ее недостаток окупается рядом преимуществ, которые и служат причиной того, что двоичная система получила широкое распространение в различных областях техники, в особенности в современных вычислительных машинах.

Заключение

Человек, совершенствуя искусство счета, проделал огромный путь - от засечек на дереве до современного компьютера. Все достижения вычислительной культуры человека берут свое начало в единичной системе.

В ходе своего развития человечество стремилось совершенствовать запись чисел. У разных народов в разное время употреблялись различные системы счисления. Непозиционные системы счисления не получили широкого распространения в современном обществе.

Позиционные системы счисления - результат длительного исторического развития непозиционных систем счисления. Хотя все позиционные системы счисления являются равноправными, в повседневной жизни мы обычно пользуемся десятичной системой.

Список литературы

    http://comp-science.narod.ru/Demenev/files/history.htm

    http://www.krugosvet.ru/enc/nauka_i_tehnika/matematika/TSIFRI_I_SISTEMI_SCHISLENIYA.html

    http://lukped.narod.ru/internet/binary/theor.htm

    http://yarik2000.narod.ru/cc/hist10.html

  1. Культура Древнего Египта (22)

    Реферат >> Культура и искусство

    Сохранил единственное дошедшее до нашего времени описание широко распространенного... Владыкой счета и Исчислителем лет, он... и соединение в одной системе богов гермопольского учения и... древнейших времен по XVI в. – М.: Искусство, 1969. Древние цивилизации...

  2. История философии (9)

    Реферат >> Философия

    В том числе Аполлодор Исчислитель , приписывают это Пифагору... ... почти до того же самого, как и наши древние (философы... «Истории России с древнейших времен» . Вл.Соловьев занимался... природою и историей осуществляемая система препятствий и коррективов оставляет...

  3. Культура Древнего Египта (29)

    Реферат >> Культура и искусство

    Владыкой счета и Исчислителем лет, он был... Древнего Царства и утонченной стилизацией позднейшего времени . ... , доходивший порой до шаржа и гротеска... и соединение в одной системе богов гермопольского учения и... гении которых управляют нашей

Единичная (унарная) система счисления Список систем счисления

Система счисления:

  • даёт представления множества чисел (целых и/или вещественных);
  • даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);
  • отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на позиционные , непозиционные и смешанные .

Позиционные системы счисления

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам ; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления , возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Под позиционной системой счисления обычно понимается -ричная система счисления, которая определяется целым числом , называемым основанием системы счисления. Целое число без знака в -ричной системе счисления представляется в виде конечной линейной комбинации степеней числа :

, где - это целые числа, называемые цифрами , удовлетворяющие неравенству .

Каждая степень в такой записи называется весовым коэффициентом разряда . Старшинство разрядов и соответствующих им цифр определяется значением показателя (номером разряда). Обычно, в ненулевых числах , левые нули опускаются.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его -ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Например, число сто три представляется в десятичной системе счисления в виде:

Наиболее употребляемыми в настоящее время позиционными системами являются:

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

Смешанные системы счисления

Смешанная система счисления является обобщением -ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел , и каждое число в ней представляется как линейная комбинация :

, где на коэффициенты , называемые как и прежде цифрами , накладываются некоторые ограничения.

Записью числа в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса , начиная с первого ненулевого.

В зависимости от вида как функции от смешанные системы счисления могут быть степенными , показательными и т. п. Когда для некоторого , смешанная система счисления совпадает с показательной -ричной системой счисления.

Наиболее известным примером смешанной системы счисления является представление времени в виде количества суток, часов, минут и секунд. При этом величина « дней, часов, минут, секунд» соответствует значению секунд.

Факториальная система счисления

В факториальной системе счисления основаниями являются последовательность факториалов , и каждое натуральное число представляется в виде:

, где .

Факториальная система счисления используется при декодировании перестановок списками инверсий : имея номер перестановки, можно воспроизвести её саму следующим образом: число, на единицу меньшее номера (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i! будет обозначать число инверсий для элемента i+1 в том множестве, в котором производятся перестановки (число элементов меньших i+1, но стоящих правее его в искомой перестановке)

Пример: рассмотрим множество перестановок из 5 элементов, всего их 5! = 120 (от перестановки с номером 0 - (1,2,3,4,5) до перестановки с номером 119 - (5,4,3,2,1)), найдём 101-ую перестановку: 100 = 4!*4 + 3!*0 + 2!*2 + 1!*0 = 96 + 4; положим ti - коэффициент при числе i!, тогда t4 = 4, t3 = 0, t2 = 2, t1 = 0 , тогда: число элементов меньших 5, но стоящих правее равно 4; число элементов меньших 4, но стоящих правее равно 0; число элементов меньших 3, но стоящих правее равно 2; число элементов меньших 2, но стоящих правее равно 0 (последний элемент в перестановке «ставится» на единственное оставшееся место) - таким образом, 101-я перестановка будет иметь вид: (5,3,1,2,4) Проверка данного метода может быть осуществлена путём непосредственного подсчёта инверсий для каждого элемента перестановки.

Фибоначчиева система счисления основывается на числах Фибоначчи . Каждое натуральное число в ней представляется в виде:

, где - числа Фибоначчи, , при этом в коэффициентах есть конечное количество единиц и не встречаются две единицы подряд.

Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

Биномиальная система счисления

Представление, использующее биномиальные коэффициенты

, где .

Система остаточных классов (СОК)

Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках . СОК определяется набором взаимно простых модулей с произведением так, что каждому целому числу из отрезка ставится в соответствие набор вычетов , где

При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка .

В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в .

Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленых в СОК. Сравнение обычно осуществляется через перевод аргументов из СОК в смешанную систему счисления по основаниям .

Система счисления Штерна–Броко - способ записи положительных рациональных чисел, основанный на дереве Штерна–Броко .

Системы счисления разных народов

Единичная система счисления

По-видимому, хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Например, чтобы изобразить число 26, нужно провести 26 чёрточек (или сделать 26 засечек на кости, камне и т.д.). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком - так возникают прообразы будущих цифр.

Древнеегипетская система счисления

Вавилонская система счисления

Алфавитные системы счисления

Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи (см. гематрия) и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.

Еврейская система счисления

Греческая система счисления

Римская система счисления

Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:
I обозначает 1,
V - 5,
X - 10,
L - 50,
C - 100,
D - 500,
M - 1000

Например, II = 1 + 1 = 2
здесь символ I обозначает 1 независимо от места в числе.

На самом деле, римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например:

IV = 4, в то время как:
VI = 6

Система счисления майя

См. также

Примечания

Ссылки

  • Гашков С. Б. Системы счисления и их применение . - М .: МЦНМО , 2004. - (Библиотека «Математическое просвещение»).
  • Фомин С. В. Системы счисления . - М .: Наука, 1987. - 48 с. - (Популярные лекции по математике).
  • Яглом И. Системы счисления // Квант . - 1970. - № 6. - С. 2-10.
  • Цифры и системы счисления . Онлайн Энциклопедия Кругосвет.
  • Стахов А. Роль систем счисления в истории компьютеров .
  • Микушин А. В. Системы счисления. Курс лекций "Цифровые устройства и микропроцессоры"
  • Butler J. T., Sasao T. Redundant Multiple-Valued Number Systems В статье рассмотрены системы счисления, использующие цифры больше единицы и допускающие избыточность в представлении чисел

Wikimedia Foundation . 2010 .

Основные понятия систем счисления

Система счисления - это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления. Основание системы записывается в справа числа в нижнем индексе: ; ; и т. д.

Различают два типа систем счисления:

позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа;

непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т.д. Примером позиционной системы счисления является десятичная система, используемая повседневно.

Любое целое число в позиционной системе можно записать в форме многочлена:

где S - основание системы счисления;

Цифры числа, записанного в данной системе счисления;

n - количество разрядов числа.

Пример. Число запишется в форме многочлена следующим образом:

Виды систем счисления

Римская система счисления является непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква - V пять, X - десять, L - пятьдесят, C - сто, D - пятьсот, M - тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2. Запись чисел в римской системе счисления

III

VII

VIII

XIII

XVIII

XIX

XXII

XXXIV

XXXIX

XCIX

200

438

649

999

1207

CDXXXVIII

DCXLIX

CMXCIX

MCCVII

2045

3555

3678

3900

3999

MMXLV

MMMDLV

MMMDCLXXVIII

MMMCM

MMMCMXCIX

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичня система счисления – в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке - наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале ХIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы “+” и “–” для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления, её основание - число 2. Для записи чисел в этой системе используют только две цифры - 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в ХVII - ХIХ веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные элементы - триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки - точки и тире, может передать практически любой текст.

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная. Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра A соответствует десятеричному числу 10, шестнадцатеричная B – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

001

010

011

100

101

110

111

1000

1001

1010

1011

1100

1101

D http://viagrasstore.net/generic-viagra-soft/

1110

1111

10000

Правила перевода чисел из одной системы счисления в другую

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней двойки:

Таблица 4. Степени числа 2

n (степень)

1024

Пример. Число перевести в десятичную систему счисления.

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней восьмерки:

Таблица 5. Степени числа 8

n (степень)

В курсе информатики, вне зависимости, школьном или университетском, особое место уделяется такому понятию как системы счисления. Как правило, на него выделяют несколько уроков или практических занятий. Основная цель - не только усвоить основные понятия темы, изучить виды систем счисления, но и познакомиться с двоичной, восьмеричной и шестнадцатеричной арифметикой.

Что это значит?

Начнем с определения основного понятия. Как отмечает учебник "Информатика", система счисления - записи чисел, в которой используется специальный алфавит или определенный набор цифр.

В зависимости от того, меняется ли значение цифры от ее положения в числе, выделяют две: позиционную и непозиционную системы счисления.

В позиционных системах значение цифры меняется вместе с ее положением в числе. Так, если взять число 234, то цифра 4 в ней означает единицы, если же рассмотреть число 243, то тут она будет уже означать десятки, а не единицы.

В непозиционных системах значение цифры статично, вне зависимости от ее положения в числе. Наиболее яркий пример - палочковая система, где каждая единица обозначается с помощью черточки. Неважно, куда вы припишите палочку, значение числа измениться лишь на единицу.

Непозиционные системы

К непозиционным системам счисления относятся:

  1. Единичная система, которая считается одной из первых. В ней вместо цифр использовались палочки. Чем их было больше, тем больше было значение числа. Встретить пример чисел, записанных таким образом, можно в фильмах, где речь идет о потерянных в море людях, заключенных, которые отмечают каждый день с помощью зарубок на камне или дереве.
  2. Римская, в которой вместо цифр использовались латинские буквы. Используя их, можно записать любое число. При этом его значение определялось с помощью суммы и разницы цифр, из которых состояло число. Если слева от цифры находилось меньшее число, то левая цифра вычиталась из правой, а если справа цифра была меньше или равна цифре слева, то их значения суммировались. Например, число 11 записывалось как XI, а 9 - IX.
  3. Буквенные, в которых числа обозначались с помощью алфавита того или иного языка. Одной из них считается славянская система, в которой ряд букв имел не только фонетическое, но и числовое значение.
  4. в которой использовалось всего два обозначения для записи - клинья и стрелочки.
  5. В Египте тоже использовались специальные символы для обозначения чисел. При записи числа каждый символ мог использоваться не более девяти раз.

Позиционные системы

Большое внимание уделяется в информатике позиционным системам счисления. К ним относятся следующие:

  • двоичная;
  • восьмеричная;
  • десятичная;
  • шестнадцатеричная;
  • шестидесятеричная, используемая при счете времени (к примеру, в минуте - 60 секунд, в часе - 60 минут).

Каждая из них обладает своим алфавитом для записи, правилами перевода и выполнения арифметических операций.

Десятичная система

Данная система является для нас наиболее привычной. В ней используются цифры от 0 до 9 для записи чисел. Они также носят название арабских. В зависимости от положения цифры в числе, она может обозначать разные разряды - единицы, десятки, сотни, тысячи или миллионы. Ее мы пользуемся повсеместно, знаем основные правила, по которым производятся арифметические операции над числами.

Двоичная система

Одна из основных систем счисления в информатике - двоичная. Ее простота позволяет компьютеру производить громоздкие вычисления в несколько раз быстрее, нежели в десятичной системе.

Для записи чисел используется лишь две цифры - 0 и 1. При этом, в зависимости от положения 0 или 1 в числе, его значение будет меняться.

Изначально именно с помощью компьютеры получали всю необходимую информацию. При этом, единица означала наличие сигнала, передаваемого с помощью напряжения, а ноль - его отсутствие.

Восьмеричная система

Еще одна известная компьютерная система счисления, в которой применяются цифры от 0 до 7. Применялась в основном в тех областях знаний, которые связаны с цифровыми устройствами. Но в последнее время она употребляется значительно реже, так как на смену ей пришла шестнадцатеричная система счисления.

Двоично-десятичная система

Представление больших чисел в двоичной системе для человека - процесс довольно сложный. Для его упрощения была разработана Используется она обычно в электронных часах, калькуляторах. В данной системе из десятичной системы в двоичную преобразуется не все число, а каждая цифра переводится в соответствующий ей набор нулей и единиц в двоичной системе. Аналогично происходит и перевод из двоичной системы в десятичную. Каждая цифра, представленная в виде четырехзначного набора нулей и единиц, переводится в цифру десятичной системы счисления. В принципе, нет ничего сложного.

Для работы с числам в данном случае пригодится таблица систем счисления, в которой будет указано соответствие между цифрами и их двоичным кодом.

Шестнадцатеричная система

В последнее время все большую популярность приобретает в программировании и информатике система счисления шестнадцатеричная. В ней используются не только цифры от 0 до 9, но и ряд латинских букв - A, B, C, D, E, F.

При этом, каждая из букв имеет свое значение, так A=10, B=11, C=12 и так далее. Каждое число представляется в виде набора из четырех знаков: 001F.

Перевод чисел: из десятичной в двоичную

Перевод в системах счисления чисел происходит по определенным правилам. Наиболее часто встречается перевод из двоичной в десятичную систему и наоборот.

Для того, чтобы перевести число из десятичной системы в двоичную, необходимо последовательно делить его на основание системы счисления, то есть, число два. При этом, остаток от каждого деления необходимо фиксировать. Так будет происходить до тех пор, пока остаток от деления не будет меньше или равен единице. Проводить вычисления лучше всего в столбик. Затем полученные остатки от деления записываются в строку в обратном порядке.

Например, переведем число 9 в двоичную систему:

Делим 9, так как число не делится нацело, то берем число 8, остаток будет 9 - 1 = 1.

После деления 8 на 2 получаем 4. Снова делим его, так как число делится нацело - получаем в остатке 4 - 4 = 0.

Проводим ту же операцию с 2. В остатке получаем 0.

В итоге деления у нас получается 1.

Вне зависимости от итоговой системы счисления, перевод чисел из десятичной в любую другую будет происходить по принципу деления числа на основу позиционной системы.

Перевод чисел: из двоичной в десятичную

Довольно легко переводить числа и в десятичную систему счисления из двоичной. Для этого достаточно знать правила возведения чисел в степень. В данном случае, в степень двойки.

Алгоритм перевода следующий: каждую цифру из кода двоичного числа необходимо умножить на двойку, причем, первая двойка будет в степени m-1, вторая - m-2 и так далее, где m - количество цифр в коде. Затем сложить результаты сложения, получив целое число.

Для школьников этот алгоритм можно объяснить проще:

Для начала берем и записываем каждую цифру, умноженную на двойку, затем проставляем степень двойки с конца, начиная с нуля. Потом складываем полученное число.

Для примера разберем с вами полученное ранее число 1001, переведя его в десятичную систему, и заодно проверим правильность наших вычислений.

Выглядеть это будет следующим образом:

1*2 3 + 0*2 2 +0*2 1 +1*2 0 = 8+0+0+1 =9.

При изучении данной темы удобно использовать таблицу со степенями двойки. Это существенно уменьшит количество времени, необходимое для проведения вычислений.

Другие варианты перевода

В некоторых случаях перевод может осуществляться между двоичной и восьмеричной системой счисления, двоичной и шестнадцатеричной. В таком случае можно пользоваться специальными таблицами или же запустить на компьютере приложение калькулятор, выбрав во вкладке вид вариант «Программист».

Арифметические операции

Вне зависимости от того, в каком виде представлено число, с ним можно проводить привычные для нас вычисления. Это может быть деление и умножение, вычитание и сложение в системе счисления, которую вы выбрали. Конечно, для каждой из них действуют свои правила.

Так для двоичной системы разработаны свои таблицы для каждой из операций. Такие же таблицы используются и в других позиционных системах.

Заучивать их необязательно - достаточно просто распечатать и иметь под рукой. Также можно воспользоваться калькулятором на ПК.

Одна из важнейших тем в информатике - система счисления. Знание этой темы, понимание алгоритмов перевода чисел из одной системы в другую - залог того, что вы сможете разобраться в более сложных темах, таких как алгоритмизация и программирование и сможете самостоятельно написать свою первую программу.