Усеченный конус. Тела и поверхности вращения

Конус (с греческого «konos») сосновая шишка. Конус знаком людям с глубокой древности. В 1906 году была обнаружена книга «О методе», написанная Архимедом (287-212 гг. до н. э.), в этой книге дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед говорит, что это открытие принадлежит древнегреческому философу Демокриту (470-380 гг. до н.э.), который с помощью данного принципа получил формулы для вычисления объема пирамиды и конуса.

Конус (круговой конус) – тело, которое состоит из круга – основание конуса, точки, не принадлежащей плоскости этого круга, – вершины конуса и всех отрезков, соединяющих вершину конуса и точки окружности основания. Отрезки, которые соединяют вершину конуса с точками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым, если прямая, которая соединяет вершину конуса с центром основания, перпендикулярна плоскости основания. Прямой круговой конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси.

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого конуса называется прямая, содержащая его высоту.

Сечение конуса плоскостью, проходящей через образующую конуса и перпендикулярная осевому сечению, проведённому через эту образующую, называется касательной плоскостью конуса.

Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса.

Плоскость, перпендикулярная оси конуса отсекает от него меньший конус. Оставшаяся часть называется усечённым конусом.

Объём конуса равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.

Площадь боковой поверхности конуса можно найти по формуле:

S бок = πRl,

Площадь полной поверхности конуса находится по формуле:

S кон = πRl + πR 2 ,

где R – радиус основания, l – длина образующей.

Объём кругового конуса равен

V = 1/3 πR 2 H,

где R – радиус основания, Н – высота конуса

Площадь боковой поверхности усеченного конуса можно найти по формуле:

S бок = π(R + r)l,

Площадь полной поверхности усеченного конуса можно найти по формуле:

S кон = πR 2 + πr 2 + π(R + r)l,

где R – радиус нижнего основания, r – радиус верхнего основания, l – длина образующей.

Объём усечённого конуса можно найти следующим образом:

V = 1/3 πH(R 2 + Rr + r 2),

где R – радиус нижнего основания, r – радиус верхнего основания, Н – высота конуса.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Определения:
Определение 1. Конус
Определение 2. Круговой конус
Определение 3. Высота конуса
Определение 4. Прямой конус
Определение 5. Прямой круговой конус
Теорема 1. Образующие конуса
Теорема 1.1. Осевое сечение конуса

Объем и площади :
Теорема 2. Объем конуса
Теорема 3. Площадь боковой поверхности конуса

Усеченный конус :
Теорема 4. Сечение, параллельное основанию
Определение 6. Усеченный конус
Теорема 5. Объем усеченного конуса
Теорема 6. Площадь боковой поверхности усеченного конуса

Определние
Тело ограниченное с боков конической поверхностью, взятой между её вершиной и плоскостью направляющей, и плоским основанием направляющей, образованным замкнутой кривой, называется конусом.

Основные понятия
Круговым конусом называют тело, которое состоит из круга (основания), точки, не лежащей в плоскости основания (вершины) и всех отрезков соединяющих вершину с точками основания.

Прямым конусом называется конус, высота которого основанием содержит центр основания конуса.

Рассмотрим какую-либо линию (кривую, ломаную или смешанную)(например, l ), лежащую в некоторой плокости, и произвольную точку (например, М), не лежащую в этой плоскости. Всевозможные прямые, соединяющие точку М со всеми точками данной линии l , образуют поверхность, называемую канонической . Точка М является вершиной такой поверхности, а заданная линия l - направляющей . Все прямые соединяющие точку М со всеми точками линии l , называют образующими . Каноническая поверхность не ограничивается ни её вершиной, ни направляющей. Она простирается неограниченно в обе стороны от вершины. Пусть теперь направляющая - замкнутая выпуклая линия. Если направляющая - ломаная линия, то тело, ограниченное с боков канонической поверхностью, взятой между её вершиной и плокостью направляющей, и плоским основанием в плоскости направляющей, называется пирамидой .
Если же направляющая - кривая или смешанная линия, то тело, ограниченное с боков канонической поверхностью, взятой между её вершиной и плокостью направляющей, и плоским основанием в плоскости направляющей, называется конусом или
Определение 1 . Конусом называют тело, состоящее из основания - плоской фигуры, ограниченной замкнутой линией (кривой или смешанной), вершины - точки, не лежащей в плокости основания, и всех отрезков, соединяющих вершину со всевозможными точками основания.
Все прямые, проходящие через вершину конуса и любую из точек кривой, ограничивающей фигуру основания конуса, называются образующими конуса. Чаще всего в геометрических задачах под образующей прямой имеется ввиду отрезок этой прямой, заключенный между вершиной и плоскостью основания конуса.
Основание ограниченной смешанной линией - это очень редкий случай. Он сдесь указан только потому, что он может быть рассмотрен в геометрии. Чаще рассматривается случай с криволинейной направляющей. Хотя, что случай с произвольной кривой, что случай со смешанной направляющей, мало чем полезен и в них сложно вывести какие-любо закономерности. Из числа конусов в курсе элементарной геометрии изучается прямой круговой конус.

Известно, что окружность есть частный случай замкнутой кривой линии. Круг - плоская фигура, ограниченная окружностью. Принимая окружность за направляющую, можно определеить круговой конус.
Определение 2 . Круговым конусом называют тело, которое состоит из круга (основания), точки, не лежащей в плоскости основания (вершины) и всех отрезков соединяющих вершину с точками основания.
Определение 3 . Высота конуса - перпендикуляр, опущенный из вершины на плокость основания конуса. Можно выделить конус, высота которого падает в центр плоской фигуры основания.
Определение 4 . Прямым конусом называется конус, высота которого основанием содержит центр основания конуса.
Если связать эти два определения, мы получим конус, основание котрого есть круг, а высота падает в центр этого круга.
Определение 5 . Прямым круговым конусом называют конус, основание котрого есть круг, а высота его соединяет вершину и центр основания данного конуса. Такой конус получается вращением прямоугольного треугольника вокруг одного из катетов. Поэтому прямой круговой конус является телом вращения и называется также конусом вращения. Если не оговорено противное, то для краткости в дальнейшем говорим просто конус.
Итак приведем некоторые свойства конуса:
Теорема 1 . Все образующие конуса равны. Доказательство. Высота МО перпендикулярна всем прямым основания по определению перпендикулярной прямой к плокости. Поэтому треугольники МОА, МОВ и МОС являются прямоугольными и равны по двум катетам (МО - общая, ОА=ОВ=ОС - радиусы основания. Поэтому равны и гипотенузы, т.е. образующие.
Радиус основания конуса иногда называют радиусом конуса . Высота конуса называется также осью конуса , поэтому любое сечение, проходящее через высоту называется осевым сечением . Любое осевое сечение пересекает основание по диаметру (т.к. прямая, по которой пересекаются осевое сечение и плокость основания, проходит через центр окружности) и образует равнобедренный треугольник.
Теорема 1.1. Осевое сечение конуса есть равнобедренный треугольник. Так треугольник АМВ является равнобедренным, т.к. две его стороны МВ и МА есть образующие. Угол АМВ является углом при вершине осевого сечения.

Рис. 1. Предметы из жизни, имеющие форму усеченного конуса

Как вы думаете, откуда в геометрии берутся новые фигуры? Все очень просто: человек в жизни сталкивается с похожими объектами и придумывает, как бы их назвать. Рассмотрим тумбу, на которой сидят львы в цирке, кусок морковки, который получается, когда мы нарезали только часть ее, действующий вулкан и, например, свет от фонарика (см. рис. 1).

Рис. 2. Геометрические фигуры

Мы видим, что все эти фигуры похожей формы - и снизу, и сверху они ограничены кругами, но они сужаются кверху (см. рис. 2).

Рис. 3. Отсечение верхней части конуса

Это похоже на конус. Только не хватает верхушки. Мысленно представим, что мы берем конус и отсекаем от него верхнюю часть одним взмахом острого меча (см. рис. 3).

Рис. 4. Усеченный конус

Получается как раз наша фигура, называется она усеченный конус (см. рис. 4).

Рис. 5. Сечение, параллельное основанию конуса

Пусть дан конус. Проведем плоскость, параллельную плоскости основания этого конуса и пересекающую конус (см. рис. 5).

Она разобьет конус на два тела: одно из них - конус меньшего размера, а второе и называется усеченным конусом (см. рис. 6).

Рис. 6. Полученные тела при параллельном сечении

Таким образом, усеченный конус - это часть конуса, заключенная между его основанием и параллельной основанию плоскостью. Как и в случае с конусом, усеченный конус может иметь в основании круг - в этом случае его называют круговым. Если исходный конус был прямым, то и усеченный конус называют прямым. Как и в случае с конусами, мы будем рассматривать исключительно прямые круговые усеченные конусы, если специально не указано, что речь идет о непрямом усеченном конусе или в его основаниях не круги.

Рис. 7. Вращение прямоугольной трапеции

Наша глобальная тема - тела вращения. Усеченный конус - не исключение! Вспомним, что для получения конуса мы рассматривали прямоугольный треугольник и вращали его вокруг катета? Если полученный конус пересечь плоскостью, параллельной основанию, то от треугольника останется прямоугольная трапеция. Ее вращение вокруг меньшей боковой стороны и даст нам усеченный конус. Заметим снова, что речь, разумеется, идет только о прямом круговом конусе (см. рис. 7).

Рис. 8. Основания усеченного конуса

Сделаем несколько замечаний. Основание полного конуса и круг, получающийся в сечении конуса плоскостью, называют основаниями усеченного конуса (нижним и верхним) (см. рис. 8).

Рис. 9. Образующие усеченного конуса

Отрезки образующих полного конуса, заключенные между основаниями усеченного конуса, называют образующими усеченного конуса. Так как все образующие исходного конуса равны и все образующие отсеченного конуса равны, то и образующие усеченного конуса равны (не путать отсеченный и усеченный!). Отсюда и следует равнобедренность трапеции осевого сечения (см. рис. 9).

Отрезок оси вращения, заключенный внутри усеченного конуса, называют осью усеченного конуса. Этот отрезок, разумеется, соединяет центры его оснований (см. рис. 10).

Рис. 10. Ось усеченного конуса

Высота усеченного конуса - это перпендикуляр, проведенный из точки одного из оснований к другому основанию. Чаще всего, в качестве высоты усеченного конуса рассматривают его ось.

Рис. 11. Осевое сечение усеченного конуса

Осевое сечение усеченного конуса - это сечение, проходящее через его ось. Оно имеет вид трапеции, чуть позже мы докажем ее равнобедренность (см. рис. 11).

Рис. 12. Конус с введенными обозначениями

Найдем площадь боковой поверхности усеченного конуса. Пусть основания усеченного конуса имеют радиусы и , а образующая равна (см. рис. 12).

Рис. 13. Обозначение образующей отсеченного конуса

Найдем площадь боковой поверхности усеченного конуса как разность площадей боковых поверхностей исходного конуса и отсеченного. Для этого обозначим через образующую отсеченного конуса (см. рис. 13).

Тогда искомая .

Рис. 14. Подобные треугольники

Осталось выразить .

Заметим, что из подобия треугольников , откуда (см. рис. 14).

Можно было бы выразить , разделив на разность радиусов, но нам это не нужно, ведь в искомом выражении как раз фигурирует произведение . Подставив вместо него , окончательно имеем: .

Несложно теперь получить и формулу для площади полной поверхности. Для этого достаточно добавить площади двух кругов оснований: .

Рис. 15. Иллюстрация к задаче

Пусть усеченный конус получен вращением прямоугольной трапеции вокруг ее высоты . Средняя линия трапеции равна , а большая боковая стороны - (см. рис. 15). Найти площадь боковой поверхности полученного усеченного конуса.

Решение

По формуле мы знаем, что .

Образующей конуса будет являться большая сторона исходной трапеции, то есть Радиусы конуса - это основания трапеции. Найти их мы не можем. Но нам и не надо: нужна лишь их сумма, а сумма оснований трапеции вдвое больше ее средней линии, то есть она равна . Тогда .

Обратите внимание, что, когда мы говорили о конусе, мы проводили параллели между ним и пирамидой - формулы были аналогичными. Так же и здесь, ведь усеченный конус очень похож на усеченную пирамиду, так что формулы для площадей боковой и полной поверхностей усеченного конуса и пирамиды (а скоро будут и формулы для объема) аналогичны.

Рис. 1. Иллюстрация к задаче

Радиусы оснований усеченного конуса равны и , а образующая равна . Найти высоту усеченного конуса и площадь его осевого сечения (см. рис. 1).

Рис. 1. Предметы из жизни, имеющие форму усеченного конуса

Как вы думаете, откуда в геометрии берутся новые фигуры? Все очень просто: человек в жизни сталкивается с похожими объектами и придумывает, как бы их назвать. Рассмотрим тумбу, на которой сидят львы в цирке, кусок морковки, который получается, когда мы нарезали только часть ее, действующий вулкан и, например, свет от фонарика (см. рис. 1).

Рис. 2. Геометрические фигуры

Мы видим, что все эти фигуры похожей формы - и снизу, и сверху они ограничены кругами, но они сужаются кверху (см. рис. 2).

Рис. 3. Отсечение верхней части конуса

Это похоже на конус. Только не хватает верхушки. Мысленно представим, что мы берем конус и отсекаем от него верхнюю часть одним взмахом острого меча (см. рис. 3).

Рис. 4. Усеченный конус

Получается как раз наша фигура, называется она усеченный конус (см. рис. 4).

Рис. 5. Сечение, параллельное основанию конуса

Пусть дан конус. Проведем плоскость, параллельную плоскости основания этого конуса и пересекающую конус (см. рис. 5).

Она разобьет конус на два тела: одно из них - конус меньшего размера, а второе и называется усеченным конусом (см. рис. 6).

Рис. 6. Полученные тела при параллельном сечении

Таким образом, усеченный конус - это часть конуса, заключенная между его основанием и параллельной основанию плоскостью. Как и в случае с конусом, усеченный конус может иметь в основании круг - в этом случае его называют круговым. Если исходный конус был прямым, то и усеченный конус называют прямым. Как и в случае с конусами, мы будем рассматривать исключительно прямые круговые усеченные конусы, если специально не указано, что речь идет о непрямом усеченном конусе или в его основаниях не круги.

Рис. 7. Вращение прямоугольной трапеции

Наша глобальная тема - тела вращения. Усеченный конус - не исключение! Вспомним, что для получения конуса мы рассматривали прямоугольный треугольник и вращали его вокруг катета? Если полученный конус пересечь плоскостью, параллельной основанию, то от треугольника останется прямоугольная трапеция. Ее вращение вокруг меньшей боковой стороны и даст нам усеченный конус. Заметим снова, что речь, разумеется, идет только о прямом круговом конусе (см. рис. 7).

Рис. 8. Основания усеченного конуса

Сделаем несколько замечаний. Основание полного конуса и круг, получающийся в сечении конуса плоскостью, называют основаниями усеченного конуса (нижним и верхним) (см. рис. 8).

Рис. 9. Образующие усеченного конуса

Отрезки образующих полного конуса, заключенные между основаниями усеченного конуса, называют образующими усеченного конуса. Так как все образующие исходного конуса равны и все образующие отсеченного конуса равны, то и образующие усеченного конуса равны (не путать отсеченный и усеченный!). Отсюда и следует равнобедренность трапеции осевого сечения (см. рис. 9).

Отрезок оси вращения, заключенный внутри усеченного конуса, называют осью усеченного конуса. Этот отрезок, разумеется, соединяет центры его оснований (см. рис. 10).

Рис. 10. Ось усеченного конуса

Высота усеченного конуса - это перпендикуляр, проведенный из точки одного из оснований к другому основанию. Чаще всего, в качестве высоты усеченного конуса рассматривают его ось.

Рис. 11. Осевое сечение усеченного конуса

Осевое сечение усеченного конуса - это сечение, проходящее через его ось. Оно имеет вид трапеции, чуть позже мы докажем ее равнобедренность (см. рис. 11).

Рис. 12. Конус с введенными обозначениями

Найдем площадь боковой поверхности усеченного конуса. Пусть основания усеченного конуса имеют радиусы и , а образующая равна (см. рис. 12).

Рис. 13. Обозначение образующей отсеченного конуса

Найдем площадь боковой поверхности усеченного конуса как разность площадей боковых поверхностей исходного конуса и отсеченного. Для этого обозначим через образующую отсеченного конуса (см. рис. 13).

Тогда искомая .

Рис. 14. Подобные треугольники

Осталось выразить .

Заметим, что из подобия треугольников , откуда (см. рис. 14).

Можно было бы выразить , разделив на разность радиусов, но нам это не нужно, ведь в искомом выражении как раз фигурирует произведение . Подставив вместо него , окончательно имеем: .

Несложно теперь получить и формулу для площади полной поверхности. Для этого достаточно добавить площади двух кругов оснований: .

Рис. 15. Иллюстрация к задаче

Пусть усеченный конус получен вращением прямоугольной трапеции вокруг ее высоты . Средняя линия трапеции равна , а большая боковая стороны - (см. рис. 15). Найти площадь боковой поверхности полученного усеченного конуса.

Решение

По формуле мы знаем, что .

Образующей конуса будет являться большая сторона исходной трапеции, то есть Радиусы конуса - это основания трапеции. Найти их мы не можем. Но нам и не надо: нужна лишь их сумма, а сумма оснований трапеции вдвое больше ее средней линии, то есть она равна . Тогда .

Обратите внимание, что, когда мы говорили о конусе, мы проводили параллели между ним и пирамидой - формулы были аналогичными. Так же и здесь, ведь усеченный конус очень похож на усеченную пирамиду, так что формулы для площадей боковой и полной поверхностей усеченного конуса и пирамиды (а скоро будут и формулы для объема) аналогичны.

Рис. 1. Иллюстрация к задаче

Радиусы оснований усеченного конуса равны и , а образующая равна . Найти высоту усеченного конуса и площадь его осевого сечения (см. рис. 1).

Лекция: Конус. Основание, высота, боковая поверхность, образующая, развертка

Конус – это тело, которой состоит из окружности, которая находится в основании, из точки равноудаленной от всех точек на окружности, а также от прямых, соединяющих эту точку (вершину) со всеми точками, лежащими на окружности.


Несколькими вопросами ранее, мы рассматривали пирамиду. Так вот конус – это частный случай пирамиды, в основании которой лежит окружность. Практически все свойства пирамиды подходят и для конуса.

Каким образом можно получить конус? Вспомните прошлый вопрос и то, как мы получили цилиндр. Теперь возьмите равнобедренный треугольник и крутите его вокруг своей оси – Вы получите конус.


Образующие конуса – это отрезки, заключенные между точками окружности и вершиной конуса. Образующие конуса равны между собой.

Чтобы найти длину образующей, следует воспользоваться формулой:

Если все образующие соединить между собой, можно получить боковую поверхность конуса. Общая его поверхность состоит из боковой поверхности и основания в виде окружности.


Конус имеет высоту . Чтобы ее получить, достаточно опустить перпендикуляр из вершины, непосредственно, в центр основания.


Чтобы найти площадь боковой поверхности, следует воспользоваться формулой:

Для нахождения полной площади поверхности конуса воспользуйтесь следующей формулой.