Сцепление наследования генов. Генетика пола

Вопрос 1. Что такое сцепленное наследование?
Сцепленное наследование - это совместное наследование генов, находящихся в одной хромосоме (т. е. в одной молекуле ДНК). Например, у душистого горошка гены, определяющие окраску цветков и форму пыльцы, расположены именно таким образом. Они наследуются сцепленно, поэтому при скрещивании у гибридов второго поколения образуются родительские фенотипы в соотношении 3:1, а расщепление 9:3:3:1, характерное для дигибридного скрещивания при независимом наследовании, не проявляется.
При сцепленном наследовании сила сцепления может быть разной. При полном сцеплении в потомстве гибрида появляются организмы только с родительскими сочетаниями признаков, а рекомбинанты отсутствуют. При неполном сцеплении всегда наблюдается в той или иной мере преобладание форм с родительскими признаками. Величина кроссинговера, отражающая силу сцепления между генами, измеряется отношением числа рекомбинантов к общему числу в потомстве от анализирующего скрещивания и выражается в процентах.
Гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними. За единицу расстояния между двумя генами условно принимают 1% перекреста между ними - эту величину называют морганидой.
Чем дальше друг от друга расположены два гена в хромосомах, тем больше вероятности, что между ними произойдет кроссинговер. Следовательно, по частоте кроссинговера между генами можно судить об относительном расстоянии, разделяющим гены в хромосоме, при этом гены в хромосоме расположены в линейном порядке.
Каждая хромосома в кариотипе человека несет в себе множество генов, которые могут наследоваться совместно.

Вопрос 2. Что представляют собой группы сцепления генов?
Явление совместного наследования генов было впервые описано Пеннетом, назвавшим это явление “притяжением генов”. Томас Хант Морган и его сотрудники подробно изучили явление сцепленного наследования генов и вывели законы сцепленного наследования (1910). Группа сцепления – это совокупность генов, локализованных в одной хромосоме. Число групп сцеплений для каждого вида равно гаплоидному набору хромосом, а точнее – равно количеству пар гомологичный хромосом. У человека половая пара хромосом негомологична, поэтому у женщин групп сцепления – 23, а у мужчин – 24 (22 группы сцепления - аутосомные и две по половым хромосомам Х и У). У гороха 7 групп сцепления (2n = 14), у дрозофилы - 4 группы сцепления (2n = 8).

Вопрос 3. Что является причиной нарушения сцепления генов?
Причиной нарушения сцепления генов является обмен участками гомологичных хромосом в профазе I мейотического деления. Напомним, что на этом этапе парные хромосомы конъюгируют, образуя так называемые биваленты. Формирование бивалентов может привести к перекресту хромосом, что создает возможность обмена гомологичными участками ДНК. Если это происходит, то группы сцепления меняют свое содержание (в них оказываются иные аллели тех же генов) и в потомстве могут появиться особи с фенотипом, отличающимся от родительских.

Вопрос 4. Каково биологическое значение обмена аллельными генами между гомологичными хромосомами?
Кроссинговер – обмен идентичными участками между гомологичными хромосомами, приводящий к рекомбинации наследственных задатков и формированию новых сочетаний генов в группах сцепления.
Перекрест хромосом приводит к перекомбинированию генетического мтериала и формированию новых сочетаний аллелей генов из группы сцепления. При этом увеличивается разнообразие потомков, т. е. повышается наследственная изменчивость, что имеет большое эволюционное значение. Действительно, если, например, у дрозофилы гены, определяющие окраску тела и длину крыльев, находятся на одной хромосоме, то, скрещивая чистые линии серых мух с нормальными крыльями и черных мух с укороченными крыльями, в отсутствие крос-синговера мы никогда не получим иные фенотипы. Существование же перекреста хромосом позволяет появиться (в нескольких процентах случаев) серым мухам с короткими крыльями и черным мухам с нормальными крыльями.

Вопрос 5. Подтверждена ли цитологически теория сцепленного наследования?
Теория сцепленного наследования Томаса Ханта Моргана (1866-1945) подтверждена цитологическими наблюдениями. Было показано, что хромосомы при делении целиком расходятся к разным полюсам клетки. Следовательно, гены, расположенные на одной хромосоме, при мейозе попадают в одну гамету, т.е. действительно наследуются сцепленно.

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган . Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы - у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, - над геном недоразвитых). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% - серые длиннокрылые и 41,5% - черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% - черные длиннокрылые и 8,5% - серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 - некроссоверные гаметы; 2 - кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов - АВ и аb, а отцовский - один тип - аb. Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb. Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb. Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток - мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Аb и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления - гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование - наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование - наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы - гаметы, в процессе образования которых кроссинговер не произошел.

Нерекомбинанты - гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты - гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах - условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза ), или в разных (транс-фаза ).

1 - Механизм цис-фазы (некроссоверные гаметы); 2 - механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности :

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом - кариотип.

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган . Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% — серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% — черные длиннокрылые и 8,5% — серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 — некроссоверные гаметы; 2 — кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и аb , а отцовский — один тип — аb . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb . Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В , появляются гаметы Аb и аВ , и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления — гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование — наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.

Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза ), или в разных (транс-фаза ).

1 — Механизм цис-фазы (некроссоверные гаметы); 2 — механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности :

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

    Перейти к лекции №17 «Основные понятия генетики. Законы Менделя»

Сцепленное наследование - феномен скоррелированного наследования определённых состояний генов, расположенных в одной хромосоме.

Полной корреляции не бывает из-за мейотического кроссинговера, так как сцепленные гены могут разойтись по разным гаметам. Кроссинговер наблюдается в виде расцепления у потомства тех аллелей генов и, соответственно, состояний признаков, которые были сцеплены у родителей.

Наблюдения, проведённые Томасом Морганом, показали, что вероятность кроссинговера между различными парами генов разная, и появилась идея создать генные карты на основании частот кроссинговера между разными генами. Первая генная карта была построена студентом Моргана, Альфредом Стёртевантом (англ.) в 1913 году на материале Drosophila melanogaster.

Расстояние между генами, расположенными в одной хромосоме, определяется по проценту кроссинговера между ними и прямо пропорционально ему. За единицу расстояния принят 1 % кроссинговера (1 морганида или 1 сантиморганида). Чем дальше гены находятся друг от друга в хромосоме, тем чаще между ними будет происходить кроссинговер. Максимальное расстояние между генами, расположенными в одной хромосоме, может быть равно 49 сантиморганидам.

Сцепленные признаки

Сцепленными признаками называются признаки, которые контролируются генами, расположенными в одной хромосоме. Естественно, что они передаются вместе в случаях полного сцепления.

Закон Моргана

Сцепленные гены, локализованные в одной хромосоме, наследуются совместно и не обнаруживают независимого распределения

Кроссинговер

Однако, гомологичные хромосомы могут перекрещиваться (кроссинговер или перекрест) и обмениваться гомологичными участками. В этом случае гены одной хромосомы переходят в другую, гомологичную ей. Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сцепление между ними и тем чаще возможно его нарушение.

Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах: единице расстояния между генами, находящимися в одной хромосоме, соответствует 1% кроссинговера. Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид.

27. Хромосомная теория наследственности.

Хромосомная теория наследственности - теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Хромосомная теория наследственности возникла в начале 20 в. на основе клеточной теории и использовалась для изучения наследственных свойств организмов гибридологического анализа.

Основоположник хромосомной теории Томас Гент Морган, американский генетик, Нобелевский лауреат. Морган и его ученики установили, что:

– каждый ген имеет в хромосоме определенный локус (место);

– гены в хромосоме расположены в определенной последовательности;

– наиболее близко расположенные гены одной хромосомы сцеплены, поэтому наследуются преимущественно вместе;

– группы генов, расположенных в одной хромосоме, образуют группы сцепления;

– число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и n+1 у гетерогаметных особей;

– между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов;

– частота (в %) кроссинговера между неаллельными генами пропорциональна расстоянию между ними;

– набор хромосом в клетках данного типа (кариотип) является характерной особенностью вида;

– частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимается 1 морганида (1 % кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10 % и что в 10 % потомства будут выявлены новые генетические комбинации.

Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строятся генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы. Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности. Важнейшими следствиями этой теории являются современные представления о гене, как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.

Формированию хромосомной теории способствовали данные, полученные при изучении генетики пола, когда были установлены различия в наборе хромосом у организмов различных полов.

Признаков у организма намного больше, чем хромосом.

У человека насчитывают 23 пары (46) хромосом.

Генов от 100 тыс. до 1 млн.

В каждой хромосоме находится много генов.

Гены наследуются сцепленно с хромосомой.

Наследование генов, локализованных в одной хромосоме, называется сцепленным наследованием.

Гены, локализованные в одной хромосоме, образуют группу сцепления.

В гомологичных хромосомах находятся одинаковые гены, и группу сцепления составляют две гомологичные хромосомы.

Число групп сцепления равно гаплоидному числу хромосом.

Примеры групп сцепления:

человек - 23 группы сцепления (46 хромосом)

муха дрозофилы - 4 группы сцепления (8 хромосом)

кенгуру - 6 групп сцепления (12 хромосом)

речной рак – 100 групп сцепления (200 хромосом)

Закономерности сцепленного наследования были изучены Томасом Морганом на мухах дрозофилах.

Во время мейоза при конъюгации гомологичные хромосомы обмениваются частями (кроссинговер)

Гены, находящиеся в одной хромосоме, сцеплены не абсолютно.

Перекомбинации (возникающие при неполном сцеплении генов в хромосомах) увеличивают возможность комбинативной изменчивости.

Вследствие кроссинговера отбор в процессе эволюции может идти не по целым группам сцепления, а по отдельным генам, что увеличивает резерв наследственной изменчивости и дает материал для отбора организмов

Частота кроссинговера выражается отношением числа кроссоверных особей к общему числу особей

Кроссинговер характеризует расстояние между генами.

Единица расстояния между генами, равная 1% кроссинговера, называется морганидой

При расстоянии в 50 морганид и более признаки наследуются независимо (несмотря на локализацию их в одной хромосоме)

Хромосомный механизм определения пола

Фенотипические различия между особями разного пола обусловлены генотипом.

Диплоидный набор хромосом называют кариотипом .

В женском и мужском кариотипе 23 пары (46) хромосом.

22 пары хромосом одинаковы - аутосомы.

23-я пара хромосом - половые хромосомы.

В женском кариотипе одинаковые XX-половые хромосомы.

В мужском организме XY- половые хромосомы (Y - хромосома очень мала и содержит мало генов).

Пол наследуется по законам Менделя

Пол, который образуют гаметы, одинаковые по половой хромосоме, называют гомогаметным.

Пол, образующий разные гаметы, называют гетерогаметным.

Сперматозоиды дают гаметы двух видов:

Половина содержит 22 аутосомы + Х (половая хромосома)

Половина содержит 22 аутосомы + Y (половая хромосома)

Пол будущего ребенка определяется в момент оплодотворения и зависит от того, каким сперматозоидом будет оплодотворена данная яйцеклетка.

Теоретически вероятность рождения мальчика и девочки равна 1:1 или 50%:50%.

На практике рождается больше мальчиков, но т.к. мужской организм имеет всего одну Х - хромосому, и все гены доминантные и рецессивные) проявляют свое действие, то мужской организм менее жизнеспособен.

Такое определение пола характерно для человека и млекопитающих.