Как отличить фирменное жало t12. Еще раз о паяльнике T12

Жала Hakko T12 в последнее время получают все большую популярность за счет высокого качества, удобства использования и большого ассортимента. Всего насчитывается около 80 разновидностей жал (точнее, их кончиков), чего достаточно абсолютно для любой ситуации. Большинство пользователей применяют от силы 5-10 разновидностей в работе, но при необходимости всегда можно подобрать именно такой вариант, который требуется на данный момент.

Особенности жал Hakko T12 для паяльной станции

Жала такого типа в первую очередь выделяются очень высокой скоростью нагрева до рабочего состояния. В среднем, при использовании более-менее нормальной паяльной станции, на это уходит около 15 секунд (иногда меньше). Кроме того, такие изделия по умолчанию оснащаются встроенным датчиком температуры. То есть, имея нормальный контроллер паяльника и внешний измеритель температуры, можно настроить их так, чтобы температура варьировалась на уровне 7-10 о С, не больше.

Следующий важный пункт – удобство работы. С большинством других жал нередко возникает проблема демонтажа. Приходится тратить достаточно много времени на то, чтобы снять жало и поставить новое. С жалами типа Hakko T12 такой проблемы не возникает в принципе. Весь процесс замены занимает от силы секунд пять.

Изделия поставляются в обычном полиэтиленовом пакете. У каждого из них есть по три контакта, которые разделены между собой специальными кольцами из пластика. Длина жала может варьироваться в пределах 147-154 мм, тут многое зависит от разновидности. В некоторых случаях могут быть немного длиннее или короче. На каждом из изделий присутствует код жала и его тип (наклейка с этими характеристиками).

Для работы с жалом диаметром в 5,5 миллиметров потребуется напряжение на уровне 24 вольт и мощность в 70 ватт. Они разогреваются до температуры 400 о С, но можно увеличить еще на +50 градусов. Правда, это приведет к тому, что жало будет служить значительно меньше. И что немаловажно, такие жала свободно совмещаются с припоями безсвинцового типа. Все поставляемые изделия имеют залуженные наконченики.

Популярные разновидности жал Hakko T12

Перечислять все разновидности жал этого производителя просто бессмысленно. Вариантов их применения тоже масса, но есть несколько видов, которые заслуженно пользуются самой высокой популярностью. На них и остановимся чуть детальней.

Итак, жало типа Т12-К, отдаленно напоминает кончик канцелярского ножа. Отлично подходит для нагрева большой детали или нескольких контактов. А еще с его помощью можно резать синтетику и плавить полиэтилен.

В разных наборах жал Hakko T12 могут быть самые разные вариации изделий. Перед приобретением рекомендуется уточнить, что именно входит в комплект поставки и окончательное решение принимать уже после получения такой информации.

Острые жала Т12-D08, Т12-В и Т12-IL похожи друг на друга. Кончик напоминает шило и вся разница заключается только в том, какой именно угол заточки будет у той или иной разновидности и общий диаметр острия. Подходят практически для всех стандартных вариантов использования паяльника. Искривленные жала Т12-JL02 отдаленно напоминают крючок и используются в тех случаях, когда невозможно подобраться к детали напрямую В общем, для любых труднодоступных мест.

Т12-D4 и Т12-D24 – это устройства схожие с зубилом по своему наконечнику. Сфера применения крайне обширна, но подходят практически для всего. И последние из распространенных вариаций: Т12-ВС2, Т12-С4 и Т12-С1. Это универсальные жала, вся разница между которыми заключается в диаметре острия. Именно они используются чаще всего, и потому из строя выходят они тоже чаще.

Предлагаю вашему вниманию обзор китайской паяльной станции на базе контроллера STC для жал типа Hakko T12.
Сразу скажу чем она отличается от станций на контроллере STM32. На STC нет библиотеки жал Т12 (которая используется для индивидуальной калибровки жала), соответственно нет индивидуальной калибровки жал и нет часов. STM32 позволяет запомнить для каждого своего жала 3 точки калибровки.

Сразу прошу прощения, по неведомой мне причине мои фотографии не прикрепляются к обзору (возможно они слишком большие, прикрепились только сильно уменьшенные снимки экрана) + много чего у меня просто нет, буду использовать чужие фото.

Выбор станции.
Изучение форумов и статей привело к мысли, что мне нужен паяльник с регулировкой температуры.
Есть несколько вариантов паяльников, в ручку которых встроен регулятор температуры, они относительно дешевы и вполне подходят для любительских целей.
Но аппетит приходит во время еды))) Очень хотелось качественный паяльник и по возможности с цифровой регулировкой.
Здесь все просто - если недорого, то либо относительное качество, либо регулировка температуры.
В этой категории популярны .


Более дорогая альтернатива - паяльные станции на жалах 900-ой серии, например, производства Lukey.

Таких станций очень много, в том числе с фенами (мне было бы удобно термоусадочные кембрики сажать), но в бюджетных вариантах есть один известный минус - небольшой зазор между нагревательным элементом и жалом, препятствующий быстрому теплообмену между ними. По мнению многих нужен этот зазор для компенсации тепловых деформаций. Говорят проблема легко лечится комочком фольги или «напильником», но мне это как-то сразу не понравилось.
Так же рекомендовали паяльник , у него такого зазора нет. Не понравилось, что нужно докупать блок питания и «колхозить» разъем. В комплекте его нет.

В итоге мой выбор пал на паяльную станцию на жалах T12. Эти жала так же лишены ненужных зазоров, в силу того, что нагревательный элемент, термопара и само жало запаяны в один корпус, но более популярны и ассортимент их намного шире.
Подобные жала используют и другие производители, известны они с середины 70-х годов и хорошо зарекомендовали себя в работе.
. Кстати аналогичны, но продаются в других регионах.
Обнаружилось несколько вариантов китайских станций на жалах Т12, как оказалось позднее даже больше, чем я ожидал. Покупать их можно в виде готовых изделий (я так и сделал), либо по частям, комбинируя их по своему желанию. Я выбрал готовый вариант, так набор выходил примерно в те же деньги, а у меня не было другого паяльника для сборки наборов.
Отличаются они корпусом, блоком питания, контроллером и экраном, ручкой. Ну и жало можно выбрать любое. В готовых вариантах обычно можно попросить вложить желаемое, говорят китайцы не отказывают.

В комплекте у меня еще были желтая губка для очистки жала, канифоль и шнур питания с заземлением. Кстати, жало надежно соединено с землей.


Управление станцией
На задней стенке корпуса есть выключатель. Управление станцией осуществляется вращением энкодера и короткими и длитльными нажатиями на него.
Ниже привожу фотографии меню, рабочего экрана, режимов Standby и Sleep.

Небольшое дополнение от 03.04.2017.
Старая ручка меня пару раз подвела, распаивалась текстолитовая корзина. Решил купит новую. Отчитываюсь…
Пришла заказанная мной ручка FX-9501. Посмотрел я ее, протестировал и… отложил до лучших (или худших?) времен.
Не понравилась она мне.
На фото сверху моя старая ручка (951) и новая.

Сначала о плюсах. Основное из-за чего я брал новую ручку - в старой очень ненадежная текстолитовая корзина:

В новой все намного современнее, красивее и надежнее:


На этом с плюсами закончили. Не много их, да…

Минусы.
Во первых болтается резиновый уплотнитель:


Почему так, совершенно непонятно. Но он явно тоньше, чем должен быть.

Во вторых надпись уже изначально потертая, «под старину»:

Жало немного люфтит в ручке, но это думаю не критично.

Еще жало не фиксирует гайкой, а просто вставляется в ручку. И вставляется глубже, чем в старую ручку.
Вроде как должно быть удобно… Ради этого ее многие и покупают. Но есть нюансы…
В старом жале фиксирующая гайка находится относительно дальше от кончика жала, в этой части жало уже не горячее и гайку можно открутить рукой во время работы. Я так менял жало не выключая паяльника.
В новой ручке такой фокус не пройдет. Та часть жала, что торчит уже горячая.

Как следствие глубокой посадки жала - та часть ручки, за которую держишься, ощутимо нагревается в работе. Не то что бы обжигало, но неприятно. Со старой ручкой такого быть не могло.

Ну и еще, новая ручка плохо держится в держателе:

Ну да ладно, для запасной ручки пойдет.

Есть с ней еще одна странность. Если перевернуть ее жалом вверх, то начинает глючить термодатчик, а соответственно «плавать» температура. Если подержать так ее подольше, то станция показывает вместо температуры холодного спая "?20", это по китайски означает «ошибка датчика».
В рабочем положении (жалом вниз) такой ошибки вроде не возникает.
Это наверняка как-то связано с тем, что зеленый провод общий для термодатчика и шарикового датчика положения. Только непонятно, почему со старой ручкой такой проблемы нет, хотя распайка и датчики такие же.

В заключение приведу несколько ссылок на комментарии в других обзорах и просто полезных ссылок. Информация мной не проверена, достоверность ее проверяйте самостоятельно.

Читая местные обзоры, уже не раз подумывал о покупке паяльника с жалом T12. Давно хотелось чего-то портативного с одной стороны, достаточно мощного с другой стороны, и, разумеется, нормально поддерживающего температуру.
У меня есть относительно много паяльников, купленных в разные времена и под разные задачи:
Есть совсем древние ЭПСН-40 и «москабель» 90Вт, чуть более новый ЭМП-100 (топорик), совсем новый китайский TLW 500W. Последние два особенно хорошо сохраняют температуру (даже при пайке медных труб), но вот паять ими микросхемы не очень удобно:). Попытка использования ZD-80 (пистолетик с кнопкой) не вышла - ни мощности, ни нормального поддержания температуры. Прочая «электронная» мелочь типа Antex cs18/xs25 годится только для совсем мелочей, да и встроенной регулировки не имеет. Лет 15 назад пользовался den-on"овским ss-8200, но жала там совсем малюсенькие, термодатчик далеко и градиент температуры огромен - несмотря на заявленные 80W, на жале по ощущениям и трети не будет.
В качестве стационарного варианта я уж лет 10 использую Lukey 868 (это практически 702, только нагреватель керамический и еще какие-то мелочи). Но портативности в ней нет никакой, с собой в карман или мелкую сумку никак не взять.
Т.к. на момент покупки я еще не был уверен «а нужно ли мне оно», был взят минимальный бюджетный вариант с K-жалом и ручкой, максимально похожей на привычный паяльник от Lukey. Возможно, что кому-то она кажется не очень удобной, но для меня важнее, что-бы ручки обоих используемых паяльников привычно и одинаково лежали в руке.
Дальнейший обзор можно будет условно разделить на две части - «как из запчастей сделать устройство» и попытка анализа «как это устройство и прошивка контроллера работают».
К сожалению, продавец убрал именно этот SKU, поэтому могу дать только ссылку на снимок товара из журнала заказов. Впрочем, нет никаких проблем найти аналогичный товар.

Часть 1 - конструкция

После макетной проверки работоспособности, встал вопрос о выборе конструкции.
Имелся почти подходящий блок питания (24v 65W), высотой практически 1:1 с платой управления, чуть уже ее и длиной около 100мм. Учитывая, что этот блок питания питал какую-то сдохшую (не по его вине!) связную и не дешевую lucent-овскую железку, а в его выходном выпрямителе стоят две диодные сборки на суммарные 40А, я решил, что он не сильно хуже распространенного здесь китайца на 6A. Заодно и валяться не будет.
Тестовая проверка на проверенном временем эквиваленте нагрузки (ПЭВ-100, выкручен на примерно 8 Ом)


показала, что БП практически не греется - за минут 5 работы ключевой транзистор, несмотря на свой изолированный корпус, нагрелся градусов до 40 (чуть теплый), диоды потеплее (но руку не обжигает, держать вполне комфортно), а напряжение по прежнему 24 вольта с копейками. Выбросы увеличились до сотни милливольт, но для данного напряжения и этого применения сие вполне нормально. Собственно, я остановил опыт из-за нагрузочного резистора - на его меньшей половине выделялось около 50W и температура перевалила за сотню.
В результате минимальные габариты были определены (БП + плата управления), следующим этапом шел корпус.
Поскольку одним из требований была портативность, вплоть до возможность распихать по карманам, вариант с готовыми корпусами отпал. Доступные универсальные пластмассовые корпуса совсем не годились по размерам, китайские алюминиевые корпуса под T12 для карманов куртки тоже великоваты, да и ждать еще месяц не хотелось. Вариант с «напечатанным» корпусом не проходил - ни прочности, ни теплостойкости. Прикинув возможности и вспомнив пионерскую молодость, решил сделать из древнего одностороннего фольгированного стеклотекстолита, валяющегося еще со времён СССP. Толстенная фольга (микрометр на тщательно разглаженном кусочке показал 0.2мм!) все равно не позволяла травить дорожки тоньше миллиметра из-за бокового подтравливания, а для корпуса - самое то.
Но лень вкупе с нежеланием пылить категорически не одобрила распиловку ножовкой или резаком. После прикидки имеющихся технологических возможностей, решил попробовать вариант распиловки текстолита на электрическом плиткорезе. Как оказалось - в высшей степени удобный вариант. Диск режет стеклотекстолит без всяких усилий, кромка получается практически идеальная (с резаком, ножовкой или лобзиком даже не сравнить), ширина по длине реза тоже одинаковая. И, что немаловажно, вся пыль остается в воде. Понятно, что если нужно отпилить один маленький кусочек, то разворачивать плиткорез слишком долго. Но даже на этот маленький корпус нужно было под метр реза.
Далее был спаян корпус с двумя отделениями - одно под блок питания, второе для платы управления. Первоначально, я не планировал разделение. Но, как и при сварке, припаянные в угол пластины при остывании стремятся уменьшить угол и дополнительная перепонка очень полезна.
Передняя панель согнута из алюминия в форме буквы П. В верхнем и нижнем отгибе нарезана резьба для фиксации в корпусе.
В результате получился такое (с устройством я до сих пор «играюсь», поэтому покраска пока очень черновая, из остатков старого балончика и без шлифовки):

Габаритные размеры самого корпуса - 73 (ширина) x 120 (длина) x 29 (высота). Ширину и высоту сделать меньше нельзя, т.к. размеры платы управления 69 x 25, да и найти более короткий блок питания тоже не просто.
Сзади установлен соединитель под стандартный электропровод и выключатель:


К сожалению, черного микровыключателя в хламе не оказалось, надо будет заказать. С другой стороны - белый заметнее. А вот соединитель я специально ставил стандартным - это позволяет в большинстве случаев не брать с собой дополнительный провод. В отличие от варианта с ноутбучной розеткой.
Вид снизу:

Черный изолятор из резиноподобного материала остался от исходного блока питания. Он довольно толстый (чуть меньше миллиметра), теплостойкий и очень плохо режется (отсюда и грубый вырез для пластиковой распорки - чуть-чуть не влезало). По ощущениям - как асбест, пропитанный резиной.
Слева от блока питания - радиатор выпрямителя, справа - ключевого транзистора. В оригинальном БП радиатором была тонкая полоска алюминия. Я решил «усугубить» на всякий случай. Оба радиатора изолированы от электроники, поэтому могут свободно прилегать к медным поверхностям корпуса.
На перепонке смонтирован дополнительный радиатор для платы управления, контакт с d-pak корпусами обеспечивается термопрокладкой. Пользы не много, но все лучше воздуха. Что бы исключить замыкание, пришлось чуть обкусить выступающие контакты «авиационного» разъема.
Для наглядности - паяльник рядом с корпусом:

Результат:
1) Паяльник работает примерно как заявлено и вполне помещается в карманах куртки.
2) В старом хламе утилизированы и более не валяются: блок питания, кусок стеклотекстолита 40-летней давности, балончик с нитроэмалью 1987 года выпуска, микровыключатель и небольшой кусок алюминия.

Разумеется, с точки зрения экономической целесообразности существенно проще купить готовый корпус. Пусть материалы были и практически бесплатны, но «время-деньги». Просто в моем списке задач вообще не фигурировала задача «сделать дешевле».

Часть 2 - заметки о функционировании

Как можно заметить, в первой части я вообще не упомянул о том, как все это работает. Мне показалось целесообразным не смешивать описание своей личной конструкции (довольно «колхозно-самопальной» на мой взгляд) и функционирование контроллера, который идентичен или похож у многих.

В качестве некоторого предварительного предупреждения хочу сказать:
1) Разные контроллеры имеют несколько разную схемотехнику. Даже у внешне одинаковых плат могут быть немножко отличающиеся компоненты. Т.к. у меня имеется только одно мое конкретное устройство, я никак не могу гарантировать совпадение с другими.
2) Прошивка контроллера, которую я анализировал, не единственная имеющаяся. Она распространенная, но у Вас может стоять другая прошивка, функционирующая другим образом.
3) Я нисколько не претендую на лавры первооткрывателя. Многие моменты уже были ранее освещены другими обозревателями.
4) Дальше будет много скучных букв и ни одной веселой картинки. Если внутреннее устройство не интересует - остановитесь здесь.

Обзор конструкции

Дальнейшие выкладки будут во многом связаны со схемотехникой контроллера. Для понимания его работы точная схема не обязательно, вполне достаточно рассмотреть основные компоненты:
1) Микроконтроллер STC15F204EA. Ничем особо не выдающийся чип семейства 8051, заметно более быстрый, чем оригинал (оригинал 35 летней давности, да). Питается от 5В, имеет на борту 10-битный АЦП с коммутатором, 2x512байт nvram, 4KБ программной памяти.
2) Стабилизатор на +5В, состоящий из 7805 и мощного резистора для уменьшения тепловыделения(?) на 7805, сопротивлением 120-330 Ом (на разных платах разное). Решение в высшей степени бюджетное и тепловыделяющее.
3) Силовой транзистор STD10PF06 с обвязкой. Работает в ключевом режиме на низкой частоте. Ничего выдающегося, старый.
4) Усилитель напряжения термопары. Подстроечный резистор регулирует его усиление. Имеет защиту на входе (от 24В) и подключен на один из входов АЦП МК.
5) Источник опорного напряжения на TL431. Подключен на один из входов АЦП МК.
6) Датчик температуры платы. Также подключен к АЦП.
7) Индиктор. Подключен к МК, работает в режиме динамической индикации. Подозреваю, что один из основных потребителей +5В
8) Ручка управления. Вращение регулирует температуру (и другие параметры). Линия кнопки в очень многих моделях не запаяна или разрезана. Если соединить, то позволяет настраивать дополнительные параметры.

Как несложно заметить, все функционирование определяется микроконтроллером. Почему китайцы ставят именно такой - мне неизвестно, он не сильно дешевый (около $1, если брать несколько штук) и впритык по ресурсам. В типовой китайской прошивке остаются свободными буквально десяток байт памяти программ. Сама прошивка написана на С или чем-то аналогичном (там видны явные хвосты библиотеки).

Функционирование прошивки контроллера

Исходных текстов я не имею, но IDA никуда не делась:). Механизм работы довольно простой.
При начальном запуске прошивка:
1) инициализирует устройство
2) загружает параметры из nvram
3) Проверяет нажатость кнопки, если нажата - ждет отжатия и запускает п/п настройки расширенных параметров (Pxx) Там много параметров, если нет понимания, то лучше их не трогать. Могу выложить раскладку, но опасаюсь спровоцировать проблемы.
4) Выводит на экран «SEA», ждет и запускает основной цикл работы

Есть несколько режимов работы:
1) Обычный, нормальное поддержание температуры
2) Частичное энергосбережение, температура 200 градусов
3) Полное отключение
4) Режим настройки P10(шаг настройки температуры) и P4(усиление ОУ термопары)
5) Режим альтернативного управления

После запуска работает режим 1.
При коротком нажатии кнопки производится переход в режим 5. Там можно повернуть регулятор влево и уйти в режим 2 или вправо - увеличить температуру на 10 градусов.
При длительном нажатии производится переход в режим 4.

В предыдущих обзорах было много споров, как правильно устанавливать вибродатчик. По имеющейся у меня прошивке могу сказать однозначно - без разницы. Уход в режим частичного энергосбережения выполняется по отсутствию изменений состояния вибродатчика, отсутствию существенных изменений температуры жала и отсутствию сигналов от ручки - все это на протяжении 3х минут. Замкнут вибродатчик или разомкнут - совершенно неважно, прошивка анализирует только изменения в состоянии. Вторая часть критерия тоже интересна - если вы паяете, то температура жала неминуемо плавает. И если фиксируется отклонение более чем на 5 градусов от заданной, выхода в режим энергосбережения не будет.
Если режим энергосбережения продлится больше заданного, то паяльник полностью выключится, на индикаторе будут нули.
Выход из энергосберегающих режимов - по вибрации или по ручке управления. Возврата из полного энергосбережения в частичный не бывает.

Поддержанием температуры МК занимается в одном из таймерных прерываний (их задействовано два, второе занимается дисплеем и прочим. Зачем так сделано непонятно - интервал прерывания и другие настройки выбраны одинаковые, вполне можно было обойтись единым прерыванием). Цикл управления состоит из 200 таймерных прерываний. На 200-м прерывании нагрев обязательно отключается (- целые 0.5% мощности!), выполняется задержка, после чего производится измерение напряжений с термопары, термодатчика и опорного напряжения с TL431. Далее все это по формулам и коэффициентам (частично задаваемым в nvram) пересчитывается в температуру.
Здесь я позволю себе маленькое отступление. Зачем в такой конфигурации термодатчик - не вполне понятно. При правильной организации, он должен давать поправку температуры на холодном спае термопары. Но в этой конструкции он измеряет температуру платы, не имеющую никакого отношения к требуемой. Его либо нужно переносить в ручку, как можно ближе к картриджу T12 (и еще вопрос - в каком месте картридже находится холодный спай термопары), либо вовсе выкинуть. Возможно, я чего-то не понимаю, но похоже, что китайские разработчики тупо передрали схему компенсации с какого-то другого устройства, совершенно не понимая принципов работы.

После измерения температуры вычисляется разница между заданной и текущей температурой. В зависимости от того, большая она или маленькая работают две формулы - одна большая, с кучей коэффициентов и накоплением дельты (желающие могут почитать про построение ПИД-регуляторов), вторая проще - при больших отличиях нужно либо греть максимально, либо полностью отключить (в зависимости от знака). Переменная ШИМ может иметь значение от 0 (отключено) до 200 (полностью включено) - по количеству прерываний в цикле управления.
Когда я только включил устройство (и еще не залез в прошивку), меня заинтересовал один момент - не было дрожания на ± градус. Т.е. температура либо держится стабильно, либо дергается сразу на 5-10 градусов. После анализа прошивки выяснилось, что дрожит оно по всей видимости всегда. Но при отклонении от заданной температуры менее чем на 2 градуса прошивка показывает не измеренную, а заданную температуру. Это ни хорошо и не плохо - дрожащий младший разряд тоже сильно раздражает - просто нужно иметь в виду.

Завершая разговор о прошивке хочу отметить еще несколько моментов.
1) С термопарами я не работал уже лет 20. Может за это время они стали линейнее;), но раньше для сколько-нибудь точных измерений и при наличии возможности, всегда вводилась функция корректировки нелинейности - формулой или таблицей. Здесь этого нет от слова совсем. Можно настроить только смещение нуля и угол наклона характеристики. Может во всех картриджах используются высоколинейные термопары. Либо индивидуальный разброс в разных картриджах больше, чем возможная групповая нелинейность. Хотелось бы надеяться на первый вариант, но опыт намекает на второй…
2) По непонятной для меня причине, внутри прошивки температура задается числом с фиксированной точкой и разрешением в 0.1 градус. Совершенно очевидно, что в силу предыдущего замечания, 10-битного АЦП, неверной поправки холодного конца, неэкранированного провода и т.п. реальная точность измерений и 1 градус никак не составит. Т.е. похоже, что опять содрано с какого-то другого устройства. А сложность вычислений чуть выросла (неоднократно приходится делить/умножать на десять 16-разрядные числа).
3) На плате имеются контактные площадки Rx/TX/gnd/+5v. Насколько я понял, у китайцев были специальные прошивки и специальная китайская программа, позволяющая напрямую получать данные со всех трех каналов АЦП и настраивать параметры ПИД. Но в стандартной прошивке ничего этого нет, выводы предназначены исключительно для заливки прошивки в контроллер. Программа для заливки доступна, работает через простой последовательный порт, только TTL-уровни нужны.
4) Точки на индикаторе имеют свой функционал - левая индицирует режим 5, средняя - наличие вибрации, правая - тип выводимой температуры (выставленная или текущая).
5) Для записи выбранной температуры отведено 512 байт. Сама запись сделана грамотно - каждое изменение пишется в следующую свободную ячейку. Как только достигнут конец - блок полностью стирается, а запись производится в первую ячейку. При включении берется самое дальнее записанное значение. Это позволяет увеличить ресурс в пару сотен раз.
Владелец, помни - вращая ручку настройки температуры, ты тратишь невосполнимый ресурс встроенного nvram!
6) Для остальных настроек используется второй блок nvram

С прошивкой все, если возникнут дополнительные вопросы - задавайте.

Мощность

Одна из важных характеристик паяльника - максимальная мощность нагревателя. Оценить ее можно следующим образом:
1) Имеем напряжение 24В
2) Имеем жало Т12. Измеренное мной сопротивление жала в холодном состоянии составляет чуть более 8 Ом. У меня получилось 8.4, но я не берусь утверждать, что погрешность измерения менее 0.1 Ома. Предположим, что реальное сопротивление никак не менее 8.3 Ома.
3) Сопротивление ключа STD10PF06 в открытом состоянии (по даташиту) - не более 0.2 Ома, типовое - 0.18
4) Дополнительно нужно учесть сопротивление 3х метров провода (2x1.5) и разъема.

Итоговое сопротивление цепи в холодном состоянии составляет не менее 8.7 Ома, что дает предельный ток в 2.76А. С учетом падения на ключе, проводах и разъеме, напряжением на самом нагревателе будет около 23В, что даст мощность порядка 64 Вт. Причем это предельная мощность в холодном состоянии и без учета скважности. Но не стоит особо расстраиваться - 64 Вт это весьма много. А учитывая конструкцию жала - достаточно для большинства случаев. Проверяя работоспособность в режиме постоянного нагрева, я помещал кончик жала в кружку с водой - вода вокруг жала кипела и пАрила весьма бодро.

Но вот попытка экономии с использованием БП от ноутбука имеет очень сомнительную эффективность - внешне незначительное снижение напряжения, приводит к потере трети мощности: вместо 64 Вт останется порядка 40. Стоит ли этого экономия $6?

Если наоборот, попытаться выжать из паяльника заявленные 70Вт, есть два пути:
1) Немного увеличить напряжение БП. Достаточно увеличить всего на 1В.
2) Уменьшить сопротивление цепи.
Почти единственный вариант, как немного уменьшить сопротивление цепи - заменить ключевой транзистор. К сожалению, практически все p-канальные транзисторы в используемом корпусе и на требуемое напряжение (на 30В я не рискнул бы ставить - запас будет минимален) имеют сходные Rdson. А так было бы вдвойне замечательно - заодно меньше бы грелась плата контроллера. Сейчас в режиме максимального разогрева на ключевом транзисторе выделяется около ватта.

Точность/стабильность поддержания температуры

Кроме мощности, не менее важна стабильность поддержания температуры. Причем лично для меня стабильность даже важнее точности, поскольку если значение на индикаторе можно и опытным путем подобрать - обычно я так и делаю (и не очень важно, что при выставке 300 градусов реально на жале - 290), то вот нестабильность таким образом не побороть. Впрочем, по ощущениям, стабильность поддержания температуры на T12 заметно лучше, чем на жалах 900-й серии.

Что имеет смысл переделать в контроллере

1) Контроллер греется. Не фатально, но больше желаемого. Причем главным образом его греет даже не силовая часть, а стабилизатор на 5В. Измерения показали, что ток по 5В составляет порядка 30 мА. 19В падения при 30 мА дает примерно 0.6Вт постоянного нагрева. Из них на резисторе (120Ом) выделяется порядка 0.1Вт и еще 0.5Вт - на самом стабилизаторе. Потребление остальной схемы можно игнорировать - всего 0.15Вт, из которой заметная часть тратится на индикатор. Но плата маленькая и поставить step-down просто некуда - если только на отдельной платке.

2) Силовой ключ с большим (относительно большим!) сопротивлением. Применение ключа с сопротивлением 0.05 Ом сняло бы все проблемы его нагрева и добавило бы около ватта мощности нагревателю картриджа. Но корпус был бы уже не 2х миллиметровый dpak, а минимум на размер больше. Или вообще переделать управление на n-канал.

3) Перенос ntc в ручку. Но тогда имеет смысл перенести туда и микроконтроллер, и силовой ключ и опорное напряжение.

4) Расширение функциональности прошивки (несколько наборов параметров ПИД для разных жал и т.п.). Теоретически возможно, но лично мне проще (и дешевле!) заново слепить на каком-нибудь младшем stm32, чем утаптывать в существующую память.

В результате имеем замечательную ситуацию - переделывать можно много чего, но практически любая переделка требует выкинуть старую плату и сделать новую. Либо не трогать, к чему я и склоняюсь пока.

Заключение

Имеет ли смысл переходить на T12? Не знаю. Пока я работаю только с жалом T12-K. Для меня оно одно из самых универсальных - и полигон хорошо греет, и гребенку выводов эрзац-волной пропаять/отпаять можно, и отдельный вывод острым концом прогреть можно.
C другой стороны, имеющийся контроллер и отсутствие средств автоматической идентификации конкретного типа жала усложняет работу с T12. Ну что мешало Hakko засунуть какой-нибудь идентифицирующий резистор/диод/чип внутрь картриджа? Было бы идеально, если в контроллере имелось несколько слотов под индивидуальные настройки жал (хотя-бы штуки 4) и при смене жала он автоматом загружал нужные. А в существующей системе можно как максимум сделать ручной выбор жала. Прикидывая объем работ понимаешь, что овчинка не стоит выделки. Да и картриджи по стоимости соизмеримы с целой паяльной станцией (если не брать китай по $5). Да, разумеется можно экспериментально вывести таблицу поправок температур и приклеить табличку на крышку. Но с коэффициентами ПИД (от которых напрямую зависит стабильность) так не поступить. От жала к жалу они обязаны отличаться.

Если отбросить мысли-мечты, то выходит следующее:
1) Если паяльной станции нет, но хочется - лучше забыть про 900 и брать T12.
2) Если нужно дешево и точные режимы пайки не сильно нужны - лучше взять простой паяльник с регулировкой мощности.
3) Если паяльная станция на 900х уже есть, то достаточно T12-К - универсальность и портативность получилась на высоте.

Лично я покупкой доволен, но и заменять все имеющиеся 900-е жала на T12 пока не планирую.

Это первый мой обзор, поэтому заранее приношу извинения за возможные шероховатости.

На день рождения подарили паяльную станцию со сменными жалами HAKKO T12. В комплекте было три жала, из которых использую 2, и то по бедности. Сейчас удалось взять на обзор набор жал - 10 штук.

Чем хороши такого типа жала? Во первых - быстро нагреваются - до рабочей температуры нагреваются за 12-15 секунд.
Во вторых - встроенный датчик температуры. Удается при наличии нормального контролера паяльника и внешнего измерителя температуры отстроить в пределах +-7-10 градусов.
В третьих - быстросъемные. Замена одного жала на другое - занимает 5 секунд.
В четвертых - ассортимент

Само собой братья-китайцы делают копии, в целом хорошего качества.

Для чего нужен такой набор? В связи с широкой номенклатурой деталей приходится держать широкую номенклатуру жал. Есть универсального типа - но разных размеров, есть для пайки массивных деталей, игольчатые - для мелких smd деталей, кочерга - там где неудобно подлезть к детали …

В итоге, если заниматься пайкой разнотипных деталей - образуется штук 5 - 7 жал, которые часто используешь.
Но вернемся к набору.

В таком виде приехало, было упаковано в картонную коробку и пупырку.

Жала имеют 3 контакта, разделенные пластиковыми кольцами.
Длина жала в наборе колеблется от 147 до 154 мм - зависит от типа.
На каждом жале есть наклейка с типом жала и кодом.
Диаметр жала 5,5 мм
Напряжение питания - 24 вольта
Мощность 70 ватт
Температура - до 400 градусов (можно и до 450 - но сокращается время службы)
Совместимы с безсвинцовыми припоями

В наборе есть следующие жала:
T12-B
T12-BC2
T12-D4
T12-C1
T12-C4
T12-D08
T12-D24
T12-IL
T12-JL02
T12-K


T12-K - удобно греть несколько контактов или массивную деталь, из нестандартного - сваривать полиэтилен или резать синтетическую ткань.


T12-D08, похожие по форме T12-B и T12-IL отличаются диаметром и углом заточки

T12-JL02 - используют в труднодоступных местах

T12-D4, T12-D24 - Заточка «зубило»


T12-BC2,T12-C1,T12-C4 «копыто» - диаметр 1, 2 и 4 мм универсальная заточка жала

Все жала пришли с залуженным наконечником.
Паяют хорошо, при пайке обычной канифолью с температурой за 300 на жале образуется черный нагар, лучше пользоваться специализированными флюсами.
Лично мне в наборе не хватает жала «микроволны» и с углублением для пайки выводных элементов.
После месяца использования следов выгорания жала не обнаружил. Медный пришлось бы уже раза два точить.

Хороший набор за нормальную цену.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +24 Добавить в избранное Обзор понравился +13 +31

Что из себя представляет жало Hakko T12 ? Это картридж, в который входит жало паяльника, нагреватель и термопара. Сейчас набирает популярность и в сети полно статей о них. За счет того, что их повторили китайцы, цены на них на али находятся в районе 4$, а по акции зачастую можно купить поштучно по цене в районе 3$. Ассортимент этих жал широк, утверждается что есть более 80 моделей. (Кстати Т15 это те же жала полностью совместимые с Т12)

Меня тоже привлекли эти жала после просмотра обзоров. Один из основных моментов - это быстрый нагрев. Когда ведешь отладку или ремонт, зачастую надо припаять один проводок или заменить какую деталь, и ждать каждый раз когда нагреется паяльник напрягает, а держать его все время включенным помимо сокращения ресурса не делает воздух в комнате чище. Здесь же нагрев буквально за десять секунд, т.е. пока капнул флюса и взял пинцет паяльник уже готов. Также не плохая возможность прогреть большие полигоны.

Собирать все по правильному с покупной ручкой паяльника с быстрой заменой и т.д. по деньгам не слишком оправдано, поскольку готовая станция типа BK950D стоит на AliExpress 35-40$ .

Поэтому решил все максимально упростить отказавшись от смены жал. В принципе в работе как правило используется всего пара жал редко три. Решил просто сделать пару паяльников, чтобы получилась двух канальная паяльная станция.

Итак купил на пробу пока одно жало Т12-KU.

Стержень жала на конце имеет два контактных пояска, между ними включен последовательно нагреватель сопротивлением 8 Ом и термопара. Напряжение питания до 24В и ток до 3А. Максимальная мощность около 70Вт.

Если смотреть с дальней стороны от нагревателя то сначала идет плюс далее минус и корпус самого картриджа является землей и служит для заземления жала.

К этим пояскам простой скруткой закрепил провода и обжал несколькими термоусадками.

На стержне жала видно два утолщения. После второго утолщения от кончика жала стержень имеет низкую температуру, и здесь уже можно браться руками. В этом месте намотал бумагу с обычным канцелярским клеем.

Если имеется готовая ручка для паяльника или подходящая трубка, то можно уже вклеить стержень. Но так как у меня ничего под рукой не было, то я и ручку также склеил из офисной бумаги.

Безусловно, после каждого слоя бумаги надо давать просохнуть клею. После полной просушки я обжал поверху термоусадку, чтобы меньше пачкалось и приятнее было держать.

Сзади для увеличения жесткости залил клеем (там буквально не большое кольцо клея).

Регулятор температуры сделал аналоговый за основу взял схему от китайских регуляторов. Полярность нагревателя на схеме не обозначена, плюс нагревателя по схеме сверху, минус подключен к земле схемы.

Только переделал под имеющиеся детали. Заменил стабилизатор 7806 на LM317, Q1 2N2222, Q2 AO4407 и добавил защитный диод Д3. Чертеж печатной платы привожу, выполнена на двух стороннем текстолите вторая сторона под земляной полигон. Все смд резисторы и керамические конденсаторы типоразмера 0805. Дополнительные шунтирующие конденсаторы 0.1мкФ, но можно и не ставить. С4 типоразмера В.

Единственная дефицитная деталь в этой схеме это P-Mosfet.

Я также попробовал переделать схему под N-Mosfet, которые гораздо легче достать или выковырять.

WARNING. Схема при использовании LM358 не работает. У получилось запустить используя ОУ TL082, свой вариант он привел в комментариях.

Стабилитрон D3 и транзистор Q2 брал первые попавшиеся. Стабилитрон любой на ток >20ма и напряжение 6в. Транзистор на напряжение более 40в и ток более 6А (при питании менее 20в можно ставить Mosfet со старых материнок, они как правило на напряжение 30в).

Резистор R15 и источник напряжения V1, это нагреватель и термопара паяльника.

Плату пока собирал по китайскому варианту схемы и она в сборе имеет вид.

Настройка

Схема почти не требует настройки, но надо правильно подключить нагреватель и отрегулировать диапазон температур. Отладку надо проводить при пониженном вольт до 9 напряжении питания, иначе при длительном включении на 24в можно раскалить жало до красна. Для определения правильной полярности подключения нагревателя я разорвал цепь около переменного резистора (не впаивал подстрочный резистор) и включил регулятор. При правильной полярности включении паяльника питание на него не подается и светодиод не горит. Из-за дрейфа нуля ОУ возможно такое поведение и при не правильной полярности, для проверки такой ситуации погрейте кончик жала в течении пол секунды зажигалкой. При не правильной полярности питание на паяльник питание будет подано непрерывно.

У меня был в наличии переменный резистор 10к, по этому номиналы цепи регулировки несколько отличаются от оригинала, после настройки диапазон регулировки оказался от 260º до 390º. Возможно решу расширить диапазон еще, уменьшив сопротивление низкоомного резистора R2.

Испытания

В работе паяльник показал себя вполне нормально. Скорость нагрева оказалась на высоте реально около десяти секунд (видео привожу).

С мощностью особого чуда я не увидел, если конечно не сравнивать с дешевыми китайскими станциями которые в большинстве не паяют, а ковыряют сопли. А так вполне на уровне простых, но фирменных станций.

Вот спаял этим паяльником переходник. Хотя для такого тонкого жала это извращение. Пайку столь массивных деталей комфортной не назовёшь, теплоотдачи явно не достаточно. Видео получилось скучным и длинным, пока решил не выкладывать.

В итоге в целом результаты мне вполне понравились.

Поэтому планирую заказать еще жало более массивное, пока не решил какой выбрать тип ВС или D.

И изготовить из компьютерного блока питания саму станцию на два канала. Статей о полно, снять с него 20-24в и 6а тоже вроде не проблема. Примерил, вроде после снятия лишних деталей с платы БП два регулятора влезут в корпус. Заодно собираюсь использовать вентилятор блока в качестве вытяжки. Сейчас использую 12в вентилятор с куском фильтра от кухонной вытяжки (в описании утверждалось что этот войлок типа как активированный уголь), но тяги одного вентилятора немного маловато и планирую поставить два.

Кстати вот вид сегодняшнего вентилятора который использую в качестве вытяжки.

Когда дойдут руки сделать, покажу что получилось. Пока паяльник просто подключён к лабораторному блоку. Если питать один паяльник, то можно использовать блок питания например от ноутбука, у меня от сгоревшего ноута выдает 19в и 4.5А, что вполне достаточно для работы.

Также привожу видео демонстрирующее скорость разогрева паяльника. Безусловно для более массивного жала или при более низком напряжении питания время разогрева может увеличится.

В списке элементов приведены номиналы распаянные на плате, в примечании указаны элементы на оригинальной схеме.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 Операционный усилитель

LM358A

1 В блокнот
U2 Линейный регулятор

LM317M

1 LM7806 В блокнот
Q1 Биполярный транзистор

2N2222A

1 9013 В блокнот
Q2 MOSFET-транзистор

AO4407A

1 IRF9540 В блокнот
D1-D3 Выпрямительный диод

1N4148

3 Диод D3 в оригинале отсутствует В блокнот
C2 Конденсатор 10 нФ 1 В блокнот
C3 Конденсатор 1 мкФ 1 В блокнот
C4 Конденсатор 22 мкФ 1 1 мкФ В блокнот
C5 Электролитический конденсатор 470 мкФ 1 В блокнот
R1 Резистор

22 кОм

1 30 кОм В блокнот
R2 Резистор

39 Ом

1 51 Ом В блокнот
R3 Резистор

100 Ом

1 В блокнот
R4 Резистор

120 кОм

1 100 кОм В блокнот
R5, R6, R13 Резистор