Что называется зарядом. Что такое электрический заряд в каких единицах он измеряется

Реферат по электротехнике

Выполнил: Агафонов Роман

Лужский агропромышленный колледж

Дать краткое, удовлетворительное во всех отношениях определение заряда невозможно. Мы привыкли находить понятные нам объяснения весьма сложных образований и процессов вроде атома, жидких кристаллов, распределения молекул по скоростям и т.д. А вот самые основные, фундаментальные понятия, нерасчленимые на более простые, лишенные, по данным науки на сегодняшний день, какого-либо внутреннего механизма, кратко удовлетворительным образом уже не пояснить. Особенно если объекты непосредственно не воспринимаются нашими органами чувств. Именно к таким фундаментальным понятиям относится электрический заряд.

Попытаемся вначале выяснить не что такое электрический заряд, а что скрывается за утверждением данное тело или частица имеют электрический заряд.

Вы знаете, что все тела построены из мельчайших, неделимых на более простые (насколько сейчас науке известно) частиц, которые поэтому называют элементарными. Все элементарные частицы имеют массу и благодаря этому притягиваются друг к другу. Согласно закону всемирного тяготения сила притяжения сравнительно медленно убывает по мере увеличения расстояния между ними: обратно пропорционально квадрату расстояния. Кроме того, большинство элементарных частиц, хотя и не все, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстояния, но эта сила в огромное число, раз превосходит силу тяготения. Так, в атоме водорода, схематически изображенном на рисунке 1, электрон притягивается к ядру (протону) с силой, в 1039 раз превышающей силу гравитационного притяжения.

Если частицы взаимодействуют друг с другом с силами, которые медленно уменьшаются с увеличением расстояния и во много раз превышают силы всемирного тяготения, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными. Бывают частицы без электрического заряда, но не существует электрического заряда без частицы.

Взаимодействия между заряженными частицами носят название электромагнитных. Когда мы говорим, что электроны и протоны электрически заряжены, то это означает, что они способны к взаимодействиям определенного типа (электромагнитным), и ничего более. Отсутствие заряда у частиц означает, что подобных взаимодействий она не обнаруживает. Электрический заряд определяет интенсивность электромагнитных взаимодействий, подобно тому как масса определяет интенсивность гравитационных взаимодействий. Электрический заряд – вторая (после массы) важнейшая характеристика элементарных частиц, определяющая их поведение в окружающем мире.

Таким образом

Электрический заряд – это физическая скалярная величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обозначается буквами q или Q.

Подобно тому, как в механике часто используется понятие материальной точки, позволяющее значительно упростить решение многих задач, при изучении взаимодействия зарядов эффективным оказывается представление о точечном заряде. Точечный заряд – это такое заряженное тело, размеры которого значительно меньше расстояния от этого тела до точки наблюдения и других заряженных тел. В частности, если говорят о взаимодействии двух точечных зарядов, то тем самым предполагают, что расстояние между двумя рассматриваемыми заряженными телами значительно больше их линейных размеров.

Электрический заряд элементарной частицы – это не особый «механизм» в частице, который можно было бы снять с нее, разложить на составные части и снова собрать. Наличие электрического заряда у электрона и других частиц означает лишь существование определенных взаимодействий между ними.

В природе имеются частицы с зарядами противоположных знаков. Заряд протона называется положительным, а электрона – отрицательным. Положительный знак заряда у частицы не означает, конечно, наличия у нее особых достоинств. Введение зарядов двух знаков просто выражает тот факт, что заряженные частицы могут как притягиваться, так и отталкиваться. При одинаковых знаках заряда частицы отталкиваются, а при разных – притягиваются.

Никакого объяснения причин существования двух видов электрических зарядов сейчас нет. Во всяком случае, никаких принципиальных различий между положительными и отрицательными зарядами не обнаруживается. Если бы знаки электрических зарядов частиц изменились на противоположные, то характер электромагнитных взаимодействий в природе не изменился бы.

Положительные и отрицательные заряды очень хорошо скомпенсированы во Вселенной. И если Вселенная конечна, то ее полный электрический заряд, по всей вероятности, равен нулю.

Наиболее замечательным является то, что электрический заряд всех элементарных частиц строго одинаков по модулю. Существует минимальный заряд, называемый элементарным, которым обладают все заряженные элементарные частицы. Заряд может быть положительным, как у протона, или отрицательным, как у электрона, но модуль заряда во всех случаях один и тот же.

Отделить часть заряда, например, у электрона невозможно. Это, пожалуй, самое удивительное. Никакая современная теория не может объяснить, почему заряды всех частиц одинаковы, и не в состоянии вычислить значение минимального электрического заряда. Оно определяется экспериментально с помощью различных опытов.

В 60-е гг., после того как число вновь открытых элементарных частиц стало угрожающе расти, была выдвинута гипотеза о том, что все сильно взаимодействующие частицы являются составными. Более фундаментальные частицы были названы кварками. Поразительным оказалось то, что кварки должны иметь дробный электрический заряд: 1/3 и 2/3 элементарного заряда. Для построения протонов и нейтронов достаточно двух сортов кварков. А максимальное их число, по-видимому, не превышает шести.

Создать макроскопический эталон единицы электрического заряда, подобный эталону длины – метру, невозможно из-за неизбежной утечки заряда. Естественно было бы за единицу принять заряд электрона (это сейчас и сделано в атомной физике). Но во времена Кулона еще не было известно о существовании в природе электрона. Кроме того, заряд электрона слишком мал, и поэтому его трудно использовать в качестве эталона.

В Международной системе единиц (СИ) единицу заряда – кулон устанавливают с помощью единицы силы тока:

1 кулон (Кл) – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока в 1 А.

Заряд в 1 Кл очень велик. Два таких заряда на расстоянии 1 км отталкивались бы друг от друга с силой, чуть меньшей силы, с которой земной шар притягивает груз массой в 1 т. Поэтому сообщить небольшому телу (размером порядка нескольких метров) заряд в 1 Кл невозможно. Отталкиваясь друг от друга, заряженные частицы не смогли бы удерживаться на таком теле. Никаких других сил, которые были бы способны в данных условиях компенсировать кулоновское отталкивание, в природе не существует. Но в проводнике, который в целом нейтрален, привести в движение заряд в 1 Кл не составляет большого труда. Ведь в обычной электрической лампочке мощностью 100 Вт при напряжении 127 В устанавливается ток, немного меньший 1 А. При этом за 1 с через поперечное сечение проводника проходит заряд, почти равный 1 Кл.

Для обнаружения и измерения электрических зарядов применяется электрометр. Электрометр состоит из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 2). Стержень со стрелкой закреплен в плексигласовой втулке и помещен в металлический корпус цилиндрической формы, закрытый стеклянными крышками.

Принцип работы электрометра. Прикоснемся положительно заряженной палочкой к стержню электрометра. Мы увидим, что стрелка электрометра отклоняется на некоторый угол (см. рис. 2). Поворот стрелки объясняется тем, что при соприкосновении заряженного тела со стержнем электрометра электрические заряды распределяются по стрелке и стержню. Силы отталкивания, действующие между одноименными электрическими зарядами на стержне и стрелке, вызывают поворот стрелки. Наэлектризуем эбонитовую палочку еще раз и вновь коснемся ею стержня электрометра. Опыт, показывает, что при увеличении электрического заряда на стержне угол отклонения стрелки от вертикального положения увеличивается. Следовательно, по углу отклонения стрелки электрометра можно судить о значении электрического заряда, переданного стержню электрометра.

Совокупность всех известных экспериментальных фактов позволяет выделить следующие свойства заряда:

Существует два рода электрических зарядов, условно названных положительными и отрицательными. Положительно заряженными называют тела, которые действуют на другие заряженные тела так же, как стекло, наэлектризованное трением о шелк. Отрицательно заряженными называют тела, которые действуют так же, как эбонит, наэлектризованный трением о шерсть. Выбор названия «положительный» для зарядов, возникающих на стекле, и «отрицательный» для зарядов на эбоните совершенно случаен.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

Электрический заряд - физическая величина, характеризующая интенсивность электромагнитного взаимодействия тел. Сам по себе электрический заряд не существует, его носителем может быть только частица вещества.

Основные свойства

1. Двойственность : в природе существуют заряды двух знаков, одноименные отталкиваются, разноименные притягиваются. В связи с этим заряды условного разделены на положительные и отрицательные.

Положительным назван заряд, которым обладает стеклянная палочка, потертая о шелк или бумагу.

Отрицательный - заряд, которым обладает янтарная или эбонитовая палочка, потертая о мех или шерсть.

2. Квантование : если физическая величина принимает только определенные дискретные значения, говорят, что она квантуется (дискретна). Опыт показывает, что любой электрический заряд квантуется, т.е. состоит из целого числа элементарных зарядов.

где =1,2,…целое число; e =1,6·1 -19 Кл - элементарный заряд.

Наименьшим (элементарным) отрицательным зарядом обладает электрон, положительным - протон.

1 кулон - заряд, проходящий через поперечное сечение проводника за одну секунду, когда по проводнику идет постоянный ток силой один ампер.

3. Сохранение заряда.

Электрические заряды могут исчезать и возникать вновь только парами. В каждой такой паре заряды равны по величине и противоположны по знаку. Например, электрон и позитрон при встрече аннигилируют, т.е. превращаются в нейтральные g - фотоны, при этом исчезают заряды –e и +e. В ходе процесса, называемого рождением пары, g - фотон, попадая в поле атомного ядра, превращается в пару частиц электрон и позитрон, при этом возникают заряды +e и –e.

Закон сохранения заряда: в изолированной системе алгебраическая сумма зарядов остается постоянной величиной при всех изменениях внутри системы.

Изолированной называется система тел, которая не обменивается зарядами с внешней средой.

4. Инвариантность заряда к различным инерциальным системам отсчета.

Опыт показывает, что величина заряда не зависит от скорости движения заряженного тела. Один и тот же заряд, измеренный в разных инерциальных системах отчета, одинаков.

5. Аддитивность : .

Классификация зарядов.

В зависимости от размеров заряженного тела заряды делят на точечные и протяженные.

· Точечными зарядом называют заряженное тело, размерами которого можно пренебречь в условиях данной задачи.

· Протяженным называется заряд тела, размерами которого в условиях данной задачи пренебречь нельзя. Протяженные заряды делятся на линейные, поверхностные и объемные.

По способности смещаться относительно положения равновесия под действием внешнего эл. поля заряды условно делят на свободные, связанные и сторонние.

Свободными называют заряды, способные свободно перемещаться в теле под действием внешнего эл. поля.

Связанными называют заряды, входящие в состав молекул диэлектриков, которые под действие эл. поля могут лишь смещаться из своего положения равновесия, но покинуть молекулу не могут.

Сторонними называются заряды, находящиеся на диэлектрике, но не входящие в состав его молекул.

Закон, которому подчиняется сила взаимодействия точечных зарядов, был установлен экспериментально в 1785г. Кулоном.

Закон Кулона : сила взаимодействия двух неподвижных точечных зарядов прямо пропорциональна зарядам, обратно пропорциональна квадрату расстояния между ними, направлена вдоль прямой, соединяющей заряды, и зависит от среды, в которой они находятся.

где q 1, q 2 - величины зарядов; r - расстояние между зарядами;

8,85·1 -12 Кл 2 /(Н·м 2) - электрическая постоянная,

e - диэлектрическая проницаемость среды.

диэлектрическая проницаемость вещества показывает, во сколько раз сила взаимодействия зарядов в данном диэлектрике меньше, чем в вакууме, вакуума =1, - безразмерная величина.

Объясним причину этого ослабления, для чего рассмотрим заряженный шарик, окруженный диэлектриком. Поле шарика ориентирует молекулы диэлектрика, и на поверхности диэлектрика, примыкающей к шарику, появляются отрицательные связанные заряды.

Поле в любой точке диэлектрика будут создавать две противоположно заряженные сферы: поверхность шарика, заряженная положительно, и примыкающая к ней отрицательно заряженная поверхность диэлектрика, при этом из поля свободных зарядов вычитается поле связанных зарядов, и суммарное поле будет более слабым, чем поле одного шара.

1. Напряженность электростатического поля. Принцип суперпозиции электрических полей. Поток вектора .

Всякий заряд изменяет свойства окружающего пространства - создает в нем электрическое поле.

Электрическое поле - одна из форм существования материи, окружающей электрические заряды. Это поле проявляет себя в том, что помещенный в какую-либо его точку электрический заряд оказывается под действием силы.

Представление об электрическом поле было введено в науку в 30-х годах XIX столетия английским учеными Майклом Фарадеем.

Согласно Фарадею, каждый электрический заряд окружен созданным им электрическим полем, поэтому такой заряд иногда называют зарядом- источником. Заряд, с помощью которого исследуют поле заряда источника, называют пробным зарядом.

Для того чтобы сила, действующая на пробный заряд, характеризовала поле в данной точке; пробный заряд должен быть точечным.

Точечным зарядом называют заряженное тело, размерами которого можно пренебречь в условиях данной задачи, т.е. размеры которого малы по сравнению с расстояниями до других тел, с которыми он взаимодействует. При этом собственное электрическое поле пробного заряда должно быть столь мало, чтобы оно не изменяло поле заряда - источника. Чем меньше размер заряженного тела и чем слабее его собственное поле по сравнению с полем заряда - источника, тем точнее данное заряженное тело удовлетворяет условию пробного заряда.

Электрическое поле распространяется в вакууме со скоростью с= 3·1 8 .

Поле неподвижных электрических зарядов - электростатическое.

Исследуем с помощью пробного заряда поле, создаваемое неподвижным зарядом - источником .

Сила, действующая на пробный заряд в данной точке поля, зависит от величины пробного заряда. Если брать различные пробные заряды, то и сила, действующая на них в данной точке поля, будет различной.

Однако отношение силы к величине пробного заряда остается постоянным и характеризует уже само поле. Это отношение называется напряженностью электрического поля в данной точке.

Напряженность электрического поля - это векторная величина, численно равная силе, с которой поле действует на единичный положительный пробный заряд в данной точке поля и сонаправленная с этой силой.

Напряженность является основной характеристикой поля и полностью характеризует поле в каждой его точке по величине и направлению.

Напряженность поля точечного заряда.

Согласно закону Кулона

=

- напряженность электрического поля точечного заряда на расстоянии r от этого заряда.

Электрическое поле удобно графически изображать с помощью картины так называемых силовых линий, или линий напряженности.

Линией напряженности называется линия, касательная к которой в каждой точке совпадает по направлению с вектором напряженности в этой точке.

Линии напряженности поля, создаваемого неподвижными зарядами, всегда начинаются и кончаются на зарядах (или в бесконечности) и никогда не бывают замкнутыми. Более сильное поле изображается более плотно расположенными линиями напряженности. Густота линий выбирается так, чтобы количество линий, пронизывающих единицу поверхности площадки, перпендикулярной к линиям, было равно численному значению вектора . Линии напряженности никогда не пересекаются, т.к. их пересечение означало бы два различных направления вектора напряженности поля в одной и той же точке, что не имеет смысла.

Однородным называется поле, в котором напряженность во всех точках имеет одну и ту же величину и одинаковое направление, . В таком поле силовые линии параллельны и плотность их всюду одинакова, т.е. они расположены на одинаковом расстоянии друг от друга.

Принцип суперпозиции.

Если электрическое поле в данной точке создано несколькими зарядами, то напряженность результирующего поля равна векторной сумме напряженностей полей, созданных каждым зарядом в отдельности.

Принцип суперпозиции является опытным фактом, справедливым вплоть до очень сильных полей. По этому же закону складываются не только статические, но и быстро меняющиеся электромагнитные поля

Выделим в векторном поле некоторый объем, ограниченный поверхностью S. Разобьем эту поверхность на элементарные площадки величиной .

Можно ввести в рассмотрение направленный элемент поверхности . Направленным элементом поверхности называется вектор, длина которого равна площади элемента , а направление совпадает с направлением нормали к этому элементу. Для замкнутой поверхности берется внешняя нормаль к поверхности. Поскольку выбор направления произволен (условен), его можно направить как в одну сторону от площадки, так и в другую, является не истинным вектором, а псевдовектором.

Направленный элемент поверхности,

Элементарная поверхность.

Потоком вектора напряженности через элементарную поверхность dS называется скалярное произведение

где a- угол между векторами и ,

Е п - проекция на направление нормали .

Просуммировав потоки через все элементарные площадки, на которые разбили поверхность S, получим поток вектора через поверхность S.

Потоком вектора через поверхность S называется интеграл

Для замкнутой поверхности .

Поток вектора - алгебраическая величина:

Для однородного поля



Потоку вектора напряженности можно дать наглядную геометрическую интерпретацию: численно равен количеству линий напряженности, пересекающих данную поверхность.

2. Теорема Гаусса для потока вектора и ее применение для расчета полей протяженных зарядов в вакууме.

Зная напряженность поля точечного заряда, и используя принцип суперпозиции, можно рассчитать напряженность поля, созданного несколькими точечными зарядами. Однако для протяженных зарядов применение принципа суперпозиции затруднительно. Метод расчета полей, созданных протяженными зарядами, был предложен немецким ученым Гауссом в начале 19 века.

Теорема Гаусса для электростатического поля в вакууме.

Рассмотрим поле точечного заряда в вакууме и вычислим через поверхность сферы радиуса

Напряженность поля в любой точке поверхности сферы

Электричество нас окружает со всех сторон. Но когда-то это было не так. Потому что само слово произошло от греческого названия конкретного материала: «электрон», по-гречески, «янтарь». С ним проводили занятные эксперименты, похожие на фокусы. Люди всегда любили чудеса, а тут - всякие пылинки, ворсинки, ниточки, волосинки, начинали притягиваться к кусочку янтаря, стоило только его потереть лоскутком ткани. То есть вот у камушка этого золотистого никаких «ручек» маленьких нет, а ворсинки поднимать может.

Вконтакте

Накопление электричества и знаний о нём

Зримое накопление электричества происходило и когда надевали на себя поделки из янтаря: янтарные бусы, янтарные заколки для волос. Тут уж объяснений, кроме как явной магии , не могло быть никаких. Ведь, чтобы фокус удавался, перебирать бусы надо было исключительно чистыми сухими руками и сидя в чистой одежде. И чистые волосы, хорошо потёртые заколкой, дают нечто красивое и устрашающее: нимб торчащей кверху шевелюры. Да ещё потрескивание. Да ещё в темноте вспышки. Это же действие духа, требовательного и капризного, равно как и страшного и непонятного. Но настала пора, и электрические явления перестали быть территорией духа.

Стали всё что угодно называть просто - «взаимодействие». Вот уж тогда и начали экспериментировать. Придумали специальную машину для этого (электрофорная машина), и банку для накопления электричества (лейденская банка). И прибор, который уже мог показывать некоторое «равно-больше-меньше» в отношении электричества (электроскоп). Осталось только всё это объяснить с помощью набиравшего силу языка формул.

Так, человечество додумалось до необходимости осознания наличия в природе некоего электрического заряда. Собственно, в названии никакого открытия не содержится. Электрический - значит, связанный с явлениями, изучение которых началось с магии янтаря . Слово «заряд» говорит только о неясных возможностях, заложенных в предмет, как ядро в пушку. Просто ясно, что электричество можно как-то добывать и как-то накапливать. И как-то ого должно измеряться. Равно как и обычное вещество, например, масло.

И, по аналогии с веществами, о мельчайших частицах которых (атомах), говорили уверенно ещё со времён Демокрита , и решили, что заряд должен непременно состоять из аналогичных очень маленьких «корпускул» - телец. Количество которых в большом заряженном теле и даст величину электрического заряда.

Электрический заряд - закон сохранения заряда

Разумеется, тогда и приблизительно не могли представить, сколько таких электрических «корпускул» может оказаться хотя бы в совсем небольшом заряженном теле. Но практическая единица электрического заряда была всё-таки нужна. И её стали придумывать. Кулон, в честь кого такую единицу потом назвали, видимо измерял величины зарядов с помощью металлических шариков, с которыми проводил опыты, но как-то относительно. Открыл свой знаменитый закон Кулона , в котором алгебраически записал, что сила, действующая между двумя, разнесёнными на расстояние R зарядами q1 и q2, пропорциональна их произведению и обратно пропорциональна квадрату расстояния между ними.

Коэффициент k зависит от среды, в которой происходит взаимодействие, в вакууме же он равен единице.

Вероятно, после Кеплера и Ньютона такие вещи делать было не так уж и сложно. Расстояние измерить легко. Заряды он делил физически, прикасаясь одними шариками к другим. Получалось, что на двух одинаковых шариках, если один заряжен, а другой нет, при соприкосновении заряд делится пополам - разбегается по обоим шарикам. Так, он получал дробные значения исходной неизвестной величины q.

Изучая взаимодействие электрических зарядов , он делал замеры при разных расстояниях между шариками, фиксировал отклонения на своих крутильных весах, которое при этом получаются, когда заряженные шарики отталкиваются друг от друга. Видимо, его закон - то была чистая победа алгебры, так как единицы измерения заряда «кулон» сам Кулон не знал и знать просто не мог.

Другой победой было открытие того факта, что общее количество этой самой величины q в шариках, которые он сумел зарядить таким способом, оставалось всегда неизменным. За что открытый закон он и назвал законом сохранения заряда.

Q = q 1 + q 2 + q 3 + … + q n

Надо отдать должное аккуратности и терпению учёного, а также отваге, с которой он провозгласил свои законы, не имея единицы количества того, что изучал.

Частица электричества - минимальный заряд

Это уже потом догадались, что элементарным, то есть самым маленьким, электрическим зарядом является… электрон. Только не маленький кусочек янтаря, а невыразимо малая частица даже уже не вещества (почти), но которая обязательно есть в любом вещественном теле. И даже в каждом атоме любого вещества . И не только в атомах, но и вокруг них. И те:

  • что находятся в атомах, называются связанные электроны.
  • а которые вокруг - свободные электроны.

Связанными в атоме электроны бывают потому, что атомное ядро тоже содержит частицы заряда - протоны, и каждый протон обязательно притянет к себе электрон. Как раз по закону Кулона.

А заряд, который вы можем видеть или чувствовать получается в результате:

  • трения,
  • накопления,
  • химической реакции,
  • электромагнитной индукции,

составляют только свободные электроны, которые были выброшены из атомов по причине разных недоразумений:

  1. от удара другого атома (тепловая эмиссия)
  2. кванта ли света (фотоэмиссия) и по другим причинам

и бродящие внутри огромных макроскопических тел (например, волосинок).

Для электронов тела наших предметов действительно огромны. В одной единице заряда (кулоне) - электронов содержится примерно вот сколько: 624 150 912 514 351 000 с небольшим. Звучит это так: 624 квадриллиона 150 триллионов 912 миллиардов 514 миллионов 351 тысяча электронов в одном кулоне электрического заряда.

А кулон, это величина совсем простая и нам близкая. Кулон, это тот самый заряд, который протекает в одну секунду через сечение проводника, если ток в нём имеет силу в один ампер . То есть при 1 ампере за каждую секунду через поперечное сечение проволочки будут мелькать как раз вот эти 624 квадриллиона … электронов.

Электроны настолько подвижны, и так быстро передвигаются внутри физических тел, что включают нам электрическую лампочку в одно мгновение, как только мы нажмём на выключатель. И поэтому электрическое взаимодействие у нас такое быстрое, что каждую секунду происходят события, называемые «рекомбинация». Сбежавший электрон находит атом, из которого электрон как раз убежал, и занимает в нём свободное место.

Количество таких событий в секунду тоже порядка…, ну, все это себе уже представляют. И эти события непрерывно повторяются, когда электроны покидают атомы, потом в атомы возвращаются. Убегают — возвращаются. Такова их жизнь, без этого они просто не могут существовать. И только благодаря этому существует электричество - та система, которая стала частью нашей жизни, нашего комфорта, нашего питания и сохранения.

Направление тока. Кто у нас в заряде главный?

Только так и остался один небольшой курьёз, который все знают, но никто из физиков так и не желает исправить.

Когда Кулон фокусничал со своими шариками, видели, что заряды бывают двух видов. И заряды одного вида отталкиваются друг от друга, а заряды разных притягиваются. Естественно было назвать одни из них положительными, а другие отрицательными . И предположить, что электрический ток течёт оттуда, где больше, туда, где меньше. То есть от плюса к минусу. Так оно и закрепилось в головах физиков на многие поколения.

Но обнаружить потом удалось первыми не электроны, а ионы. Это как раз те самые безутешные атомы, потерявшие свой электрон. В ядре которых имеется «лишний» протон, и потому они заряжены. Ну а как это обнаружили, так сразу и вздохнули, и сказали - вот он, заряд ты наш положительный. И за протоном так закрепилась слава положительно заряженной частицы.

А потом догадались, что атомы чаще всего бывают нейтральными потому, что электрический заряд ядра уравновешивается зарядом электронных оболочек, вращающихся вокруг ядра. То есть построили планетарную модель атома. И только тогда поняли, что атомы составляют всё (почти) вещество, его твёрдую кристаллическую решётку, или всю массу его жидкого тела. То есть протоны с нейтронами солидно сидят в ядрах атомов. А не на побегушках, как лёгкие и подвижные электроны. Следовательно, ток бежит не от плюса к минусу, а наоборот, от минуса к плюсу.

Все тела состоят из неделимых мельчайших частиц, называемых элементарными. Они имеют массу и способны притягиваться друг к другу. По закону всемирного тяготения, при увеличении расстояния между частицами относительно медленно убывает (она обратно пропорциональна квадрату расстояния). Сила взаимодействия частиц превосходит Это взаимодействие и называют «электрический заряд», а частицы - заряженными.

Взаимодействие частиц называют электромагнитным. Оно свойственно большинству элементарных частиц. Если же его между ними нет, то говорят об отсутствии заряда.

Электрический заряд определяет степень интенсивности Он является важнейшей характеристикой элементарных частиц, которая определяет их поведение. Обозначается буквами "q" либо "Q".

Макроскопического эталона единицы электрического заряда не существует, поскольку создать его не представляется возможным из-за его неизбежной утечки. В атомной физике за единицу принимают заряд электрона. В Международной системе единиц она устанавливается с помощью Заряд в 1 кулон (1 Кл) обозначает, что он проходит при силе тока в 1 А за 1 с через Это довольно высокий заряд. Небольшому телу сообщить его невозможно. Но в нейтральном проводнике привести в движение заряд в 1 Кл вполне реально.

Электрический заряд является скалярной физической величиной, которая характеризует способность частиц или тел вступать в электромагнитное силовое взаимодействие между собой.

При изучении взаимодействия важным является представление о точечном заряде. Он являет собой заряженное тело, размеры которого гораздо меньше расстояния от него до точки наблюдения или других заряженных частиц. При взаимодействии двух точечных зарядов расстояние между ними является гораздо большим, чем их линейные размеры.

Частицы обладают противоположными зарядами: протоны - положительным, электроны - отрицательным. Эти знаки (плюс и минус) отражают способность частиц притягиваться (при разных знаках) и отталкиваться (при одном). В природе положительные показатели и отрицательные скомпенсированы между собой.

Одинаков по модулю, независимо от того, положительный ли он, как у протона, или отрицательный, как у электрона. Минимальный заряд называется элементарным. Им обладают все заряженные частицы. Отделить часть заряда частицы невозможно. Минимальное значение определяется экспериментально.

Электрический заряд и его свойства можно измерять с помощью электрометра. Он состоит из вращающейся вокруг горизонтальной оси стрелки и металлического стержня. Если к стрежню прикоснуться положительно заряженной палочкой, то стрелка отклонится на определенный угол. Это объясняется распределением заряда по стрелке и стержню. Поворот стрелки обусловлен действием силы отталкивания. При увеличении заряда возрастает и угол отклонения от вертикали. То есть он показывает значение заряда, который передается стрежню электрометра.

Выделяют следующие свойства электрического заряда. Они могут быть положительными и отрицательными (выбор названий случаен), которые притягиваются и отталкиваются. Заряды способны передаваться при контакте от одних тел другим. Одно тело в разных условиях может обладать разными зарядами. Важным свойством является дискретность, что означает существование наименьшего, универсального заряда, которому кратны аналогичные показатели любых тел. Внутри замкнутой системы алгебраическая сумма всех зарядов остается постоянной. В природе заряды одного знака не возникают и не исчезают одновременно.

Электрический заряд – физическая величина, которая определяет способность тела принимать участие в электромагнитных взаимодействиях. Тело, обладающее ненулевым зарядом, образует вокруг себя электрическое поле, которое взаимодействует с любым другим телом, имеющим заряд.

В чем измеряется заряд

Для того чтобы ответить на вопрос, как найти заряд, нужно знать в чем он измеряется и какие формулы применять. Заряд измеряется в кулонах (Кл). Названа единица измерения в честь Шарля Кулона – физика и инженера, сделавшего значительный вклад в развитие познаний об электричестве.

Задачи о том, как найти заряд q (этой буквой обозначается эта физическая величина), изучаются в школе в рамках электростатики – части курса физики. Главным законом электростатики является закон Кулона, который записывается математически следующим образом:

F = k (q1 * q2) / r2, (1)

где F – сила, с которой действуют друг на друга заряженные тела, q – заряды тел, r – расстояние между ними, k - коэффициент.

Если известна сила, заряд одного из тел и расстояние между ними, то задача о том, как найти электрический заряд второго тела, решается из уравнения (1) очень просто.

Какие частицы заряжены

Зарядом обладают элементарные частицы – электроны и протоны. Причём модули зарядов этих частиц одинаковы. Отличаются лишь их знаки. Каждый атом, состоит из одинакового числа этих частиц. Соответственно, суммарный заряд атома равен нулю.

Протоны (вместе с нейтронами, имеющими нулевой заряд) составляют ядро атома. Вокруг ядра на большом (по меркам размера самого ядра) расстоянии вращаются электроны. Сила, описанная формулой (1), удерживает электроны на своих орбитах. Однако атомы некоторых веществ удерживают электроны, находящие на высших энергетических уровнях (наиболее удалённые от ядра), довольно слабо, и эти электроны легко отрываются и «путешествуют» между атомами.

Если часть этих электронов отнять у одного тела и передать другому, то оба тела станут электрически заряженными. Первое получит положительный заряд (за счёт дефицита электронов), второе – отрицательный (за счёт их переизбытка). Атомы, потерявшие или получившие лишние электроны, называются ионами. Соответственно процесс отдачи или получения дополнительных электронов называется ионизацией.

В школьном курсе химии и физики также встречаются задачи о том, как находить заряд ядра атома. Сделать это очень просто: нужно умножить количество протонов, присутствующих в ядре, на заряд одного протона. Заряд протона – одна из элементарных физических констант.

Чтобы узнать количество протонов в ядре атома, следует заглянуть в таблицу Менделеева: этим числом является порядковый номер нужного вещества. Например, заряд атома цинка (который имеет в периодической таблице элементов номер 30) равен:

gzn=30*1.602*10(-19) Кл=48,06*10(-19)Кл

где, gzn- заряд атома цинка; Кл - измерение заряда в кулонах.