Формулы нахождения ускорения через расстояние. Равноускоренное движение: формулы, примеры

Ускорение - знакомое слово. Не инженеру оно чаще всего попадается в новостных статьях и выпусках. Ускорение развития, сотрудничества, других общественных процессов. Исконное же значение этого слова связано с физическими явлениями. Как найти ускорение движущегося тела, или ускорение, как показатель мощности автомобиля? А может ли оно иметь иные значения?

Что происходит между 0 и 100 (определение термина)

Показателем мощности автомобиля принято считать время его разгона от нуля до сотни. А что же происходит в промежутке? Рассмотрим нашу "Ладу Веста" с ее заявленными 11 секундами.

Одна из формул как найти ускорение записывается так:

a = (V 2 - V 1) / t

В нашем случае:

a - ускорение, м/с∙с

V1 - начальная скорость, м/с;

V2 - конечная скорость, м/с;

Приведем данные в систему СИ, а именно км/ч пересчитаем в м/с:

100 км/ч = 100000 м / 3600 с = 27,28 м/с.

Теперь можно найти ускорение движения "Калины":

a = (27,28 - 0) / 11 = 2,53 м/с∙с

Что обозначают эти цифры? Ускорение 2,53 метров в секунду за секунду говорит о том, что за каждую секунду скорость «болида» увеличивается на 2,53 м/с.

При старте с места (с нуля):

  • за первую секунду автомобиль разгонится до скорости 2,53 м/с;
  • за вторую - до 5,06 м/с;
  • к концу третьей секунды скорость составит 7,59 м/с и т. д.

Таким образом, можно подытожить: ускорение - рост скорости точки за единицу времени.

Второй закон Ньютона, это несложно

Итак, величина ускорения вычислена. Самое время задаться вопросом, откуда же это ускорение берется, что является его первоисточником. Ответ один - сила. Именно сила, с которой колеса толкают автомобиль вперед, и вызывает его ускорение. И как найти ускорение, если величина этой силы известна? Зависимость между этими двумя величинами и массой материальной точки была установлена Исааком Ньютоном (это произошло не в тот день, когда ему на голову упало яблоко, тогда он открыл другой физический закон).

А записывается этот закон так:

F = m ∙ a, где

F - сила, Н;

m - масса, кг;

a - ускорение, м/с∙с.

Применительно к изделию российского автопрома, можно подсчитать силу, с которой колеса толкают машину вперед.

F = m ∙ a = 1585 кг ∙ 2,53 м/с∙с = 4010 Н

или 4010 / 9,8 = 409 кг∙с

Это означает, что если не отпускать педаль газа, то машина будет набирать скорость до достижения скорости звука? Конечно же, нет. Уже при достижении ею скорости 70 км/ч (19,44 м/с) лобовое сопротивление воздуха достигает 2000 Н.

Как найти ускорение в момент времени, когда Лада «летит» с такой скоростью?

a = F / m = (F колес - F сопр.) / m = (4010 - 2000) / 1585 = 1,27 м/с∙с

Как видим, формула позволяет находить как ускорение, зная силу с которой на механизм воздействуют двигатели (другие силы: ветра, потока воды, вес и т. д.), так и наоборот.

Для чего необходимо знать ускорение

В первую очередь для того, чтобы вычислить скорость какого-либо материального тела в интересующий момент времени, а так же его местоположение.

Предположим, что наша "Лада Веста" разгоняется на Луне, где нет лобового сопротивления воздуха по причине отсутствия такового, тогда ускорение ее на каком-то этапе будет стабильным. В этом случае определим скорость машины через 5 секунд после старта.

V = V 0 + a ∙ t = 0 + 2,53 ∙ 5 = 12,65 м/с

или 12,62 ∙ 3600 / 1000 = 45,54 км/ч

V 0 - начальная скорость точки.

А на каком расстоянии от старта окажется в этот момент наш лунный автомобиль? Для этого проще всего воспользоваться универсальной формулой определения координаты:

x = x 0 + V 0 t + (at 2) / 2

х = 0 + 0 ∙ 5 + (2,53 ∙ 5 2) / 2 = 31,63 м

x 0 - начальная координата точки.

Именно на такое расстояние успеет за 5 секунд удалиться "Веста" от линии старта.

Но на деле, для того, чтобы найти скорость и ускорение точки в заданный момент времени, в реальности необходимо учитывать и просчитывать множество других факторов. На Луну, понятное дело, "Лада Веста" если и попадет, то нескоро, на ее ускорение, кроме мощности нового инжекторного движка, влияет не только сопротивление воздуха.

На разных оборотах мотора, он выдает разное усилие, это еще не беря в расчет номер включенной передачи, коэффициент сцепления колес с дорогой, уклон этой самой дороги, скорость ветра и многое другое.

Какие еще бывают ускорения

Сила умеет не только заставлять тело двигаться вперед по прямой. Например, сила притяжения Земли заставляет Луну постоянно искривлять траекторию своего полета таким образом, что она всегда кружится вокруг нас. На Луну в данном случае воздействует сила? Да, это та самая сила, которая и была открыта Ньютоном с помощью яблока - сила притяжения.

И ускорение, которое она придает нашему естественному спутнику, называется центростремительным. Как найти ускорение Луны при ее движении по орбите?

a ц = V 2 / R = 4π 2 R / T 2 , где

a ц - центростремительное ускорение, м/с∙с;

V - скорость движения Луны по орбите, м/с;

R - радиус орбиты, м;

T- период обращения Луны вокруг Земли, с.

a ц = 4 π 2 384 399 000 / 2360591 2 = 0,002723331 м/с∙с

Хотите провести эксперимент? Да запросто. Возьмите длинную линейку, положите ее горизонтально и приподнимите один конец. У вас получится наклонная плоскость. А теперь возьмите монетку и положите на верхний конец линейки. Монетка начнет скользить вниз по линейке, проследите, как будет двигаться монетка с одинаковой скоростью или нет.

Вы заметите, что скорость монетки будет постепенно возрастать. И изменение скорости будет напрямую зависеть от угла наклона линейки. Чем угол наклона круче, тем большую скорость будет набирать монетка к концу пути.

Изменение скорости монетки

Можно попытаться узнать, как меняется скорость монетки за каждый одинаковый промежуток времени. В случае с линейкой и монеткой в домашних условиях это трудно проделать, но в условиях лаборатории можно зафиксировать, что при постоянном угле наклона скользящая монетка за каждую секунду изменяет свою скорость на одинаковую величину.

Такое движение тела, когда его скорость за любые равные промежутки времени меняется одинаково, а тело при этом движется по прямой линии, называется в физике прямолинейным равноускоренным движением. Под скоростью в данном случае понимается скорость в каждый конкретный момент времени.

Такая скорость называется мгновенной скоростью. Мгновенная скорость тела может меняться по-разному: быстрее, медленнее, может возрастать, а может уменьшаться. Для того чтобы охарактеризовать это изменение скорости, вводят величину, называемую ускорением.

Понятие ускорения: формула

Ускорение это физическая величина, показывающая, насколько изменилась скорость тела за каждый равный промежуток времени. Если скорость меняется одинаковым образом, то ускорение будет величиной постоянной. Так происходит в случае прямолинейного равноускоренного движения. Формула для ускорения выглядит следующим образом:

a = (v - v_0)/ t,

где a ускорение, v конечная скорость, v_0 начальная скорость, t время.

Измеряется ускорение в метрах на секунду в квадрате (1 м/с2). Немного странная на первый взгляд единица очень легко объясняется: ускорение= скорость/время=(м/с)/с, откуда и выводится такая единица.

Ускорение величина векторная. Оно может быть направлена либо в ту же сторону, что и скорость, если скорость возрастает, либо в противоположную сторону, если скорость уменьшается. Пример второго варианта это торможение. Если, например, автомобиль тормозит, то скорость его уменьшается. Тогда ускорение будет являться отрицательной величиной, и направлено оно будет не по ходу движения автомобиля, а в обратную сторону.

В случаях, когда скорость у нас меняется от нуля до какой-либо величины, например, при старте ракеты, либо в случае, когда скорость наоборот уменьшается до нуля, например, при торможении поезда до полной остановки, можно использовать в расчетах только одно значение скорости. Формула тогда примет вид: a =v /t для первого случая либо же: a = v_0 /t для второго.

Как изменяются показания спидометра в начале движения и при торможении автомобиля?
Какая физическая величина характеризует изменение скорости?

При движении тел их скорости обычно меняются либо по модулю, либо по направлению, либо жеодновременно как по модулю, так и по направлению.

Скорость шайбы, скользящей по льду, уменьшается с течением времени до полной остановки. Если взять в руки камень и разжать пальцы, то при падении камня его скорость постепенно нарастает. Скорость любой точки окружности точильного круга при неизменном числе оборотов в единицу времени меняется только по направлению, оставаясь постоянной по модулю (рис 1.26). Если бросить камень под углом к горизонту, то его скорость будет меняться и по модулю, и по направлению.

Изменение скорости тела может происходить как очень быстро (движение пули в канале ствола при выстреле из винтовки), так и сравнительно медленно (движение поезда при его отправлении).

Физическая величина, характеризующая быстроту изменения скорости, называется ускорением .

Рассмотрим случай криволинейного и неравномерного движения точки. В этом случае её скорость с течением времени изменяется как по модулю, так и по направлению. Пусть в некоторый момент времени t точка занимает положение М и имеет скорость (рис. 1.27). Спустя промежуток времени Δt точка займёт положение М 1 и будет иметь скорость 1 . Изменение скорости за время Δt 1 равно Δ 1 = 1 - . Вычитание вектора можно произвести путём прибавления к вектору 1 вектора (-):

Δ 1 = 1 - = 1 + (-).

Согласно правилу сложения векторов вектор изменения скорости Δ 1 направлен из начала вектора 1 в конец вектора (-), как это показано на рисунке 1.28.

Поделив вектор Δ 1 на промежуток времени Δt 1 получим вектор, направленный так же, как и вектор изменения скорости Δ 1 . Этот вектор называют средним ускорением точки за промежуток времени Δt 1 . Обозначив его через cр1 , запишем:


По аналогии с определением мгновенной скорости определим мгновенное ускорение . Для этого найдём теперь средние ускорения точки за всё меньшие и меньшие промежутки времени:

При уменьшении промежутка времени Δt вектор Δ уменьшается по модулю и меняется по направлению (рис. 1.29). Соответственно средние ускорения также меняются по модулю и направлению. Но при стремлении промежутка времени Δt к нулю отношение изменения скорости к изменению времени стремится к определённому вектору как к своему предельному значению. В механике эту величину называют ускорением точки в данный момент времени или просто ускорением и обозначают .

Ускорение точки - это предел отношения изменения скорости Δ к промежутку времени Δt, в течение которого это изменение произошло, при стремлении Δt к нулю.

Ускорение направлено так, как направлен вектор изменения скорости Δ при стремлении промежутка времени Δt к нулю. В отличие от направления скорости, направление вектора ускорения нельзя определить, зная траекторию точки и направление движения точки по траектории. В дальнейшем на простых примерах мы увидим, как можно определить направление ускорения точки при прямолинейном и криволинейном движениях.

В общем случае ускорение направлено под углом к вектору скорости (рис. 1.30). Полное ускорение характеризует изменение скорости и по модулю, и по направлению. Часто полное ускорение считается равным векторной сумме двух ускорений - касательного ( к) и центростремительного ( цс). Касательное ускорение к характеризует изменение скорости по модулю и направлено по касательной к траектории движения. Центростремительное ускорение цс характеризует изменение скорости по направлению и перпендикулярно касательной, т. е. направлено к центру кривизны траектории в данной точке. В дальнейшем мы рассмотрим два частных случая: точка движется по прямой и скорость изменяется только по модулю; точка движется равномерно по окружности и скорость изменяется только по направлению.

Единица ускорения.

Движение точки может происходить как с переменным, так и с постоянным ускорением. Если ускорение точки постоянно, то отношение изменения скорости к промежутку времени, за которое это изменение произошло, будет одним и тем же для любого интервала времени. Поэтому обозначив через Δt некоторый произвольный промежуток времени, а через Δ - изменение скорости за этот промежуток, можно записать:

Так как промежуток времени Δt - величина положительная, то из этой формулы следует, что если ускорение точки с течением времени не изменяется, то оно направлено так же, как и вектор изменения скорости. Таким образом, если ускорение постоянно, то его можно истолковать как изменение скорости в единицу времени. Это позволяет установить единицы модуля ускорения и его проекций.

Запишем выражение для модуля ускорения:

Отсюда следует, что:
модуль ускорения численно равен единице, если за единицу времени модуль вектора изменения скорости изменяется на единицу.
Если время измерено в секундах, а скорость - в метрах в секунду, то единица ускорения - м/с 2 (метр на секунду в квадрате).

В этой теме мы рассмотрим очень особенный вид неравномерного движения. Исходя из противопоставления равномерному движению , неравномерное движение - это движение с неодинаковой скоростью, по любой траектории . В чем особенность равноускоренного движения? Это неравномерное движение, но которое "равно ускоряется" . Ускорение у нас ассоциируется с увеличением скорости. Вспомним про слово "равно", получим равное увеличение скорости. А как понимать "равное увеличение скорости", как оценить скорость равно увеличивается или нет? Для этого нам потребуется засечь время, оценить скорость через один и тот же интервал времени. Например, машина начинает двигаться, за первые две секунды она развивает скорость до 10 м/с, за следующие две секунды 20 м/с, еще через две секунды она уже двигается со скоростью 30 м/с. Каждые две секунды скорость увеличивается и каждый раз на 10 м/с. Это и есть равноускоренное движение.


Физическая величина, характеризующая то, на сколько каждый раз увеличивается скорость называется ускорением.

Можно ли движение велосипедиста считать равноускоренным, если после остановки в первую минуту его скорость 7км/ч, во вторую - 9км/ч, в третью 12км/ч? Нельзя! Велосипедист ускоряется, но не одинаково, сначала ускорился на 7км/ч (7-0), потом на 2 км/ч (9-7), затем на 3 км/ч (12-9).

Обычно движение с возрастающей по модулю скоростью называют ускоренным движением. Движение же с убывающей скоростью - замедленным движением. Но физики любое движение с изменяющейся скоростью называют ускоренным движением. Трогается ли автомобиль с места (скорость растет!), или тормозит (скорость уменьшается!), в любом случае он движется с ускорением.

Равноускоренное движение - это такое движение тела, при котором его скорость за любые равные промежутки времени изменяется (может увеличиваться или уменьшаться) одинаково

Ускорение тела

Ускорение характеризует быстроту изменения скорости. Это число, на которое изменяется скорость за каждую секунду. Если ускорение тела по модулю велико, это значит, что тело быстро набирает скорость (когда оно разгоняется) или быстро теряет ее (при торможении). Ускорение - это физическая векторная величина , численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Определим ускорение в следующей задаче. В начальный момент времени скорость теплохода была 3 м/с, в конце первой секунды скорость теплохода стала 5 м/с, в конце второй - 7м/с, в конце третьей 9 м/с и т.д. Очевидно, . Но как мы определили? Мы рассматриваем разницу скоростей за одну секунду. В первую секунду 5-3=2, во вторую секунду 7-5=2, в третью 9-7=2. А как быть, если скорости даны не за каждую секунду? Такая задача: начальная скорость теплохода 3 м/с, в конце второй секунды - 7 м/с, в конце четвертой 11 м/с.В этом случае необходимо 11-7= 4, затем 4/2=2. Разницу скоростей мы делим на промежуток времени.


Эту формулу чаще всего при решении задач применяют в видоизмененном виде:

Формула записана не в векторном виде, поэтому знак "+" пишем, когда тело ускоряется, знак "-" - когда замедляется.

Направление вектора ускорения

Направление вектора ускорения изображено на рисунках


На этом рисунке машина движется в положительном направлении вдоль оси Ox, вектор скорости всегда совпадает с направлением движения (направлен вправо). Когда вектор ускорение совпадает с направлением скорости, это означает, что машина разгоняется. Ускорение положительное.

При разгоне направление ускорения совпадает с направлением скорости. Ускорение положительное.


На этом рисунке машина движется в положительном направлении по оси Ox, вектор скорости совпадает с направлением движения (направлен вправо), ускорение НЕ совпадает с направлением скорости, это означает, что машина тормозит. Ускорение отрицательное.

При торможении направление ускорения противоположно направлению скорости. Ускорение отрицательное.

Разберемся, почему при торможении ускорение отрицательное. Например, теплоход за первую секунду сбросил скорость с 9м/с до 7м/с, за вторую секунду до 5м/с, за третью до 3м/с. Скорость изменяется на "-2м/с". 3-5=-2; 5-7=-2; 7-9=-2м/с. Вот откуда появляется отрицательное значение ускорения.

При решении задач, если тело замедляется, ускорение в формулы подставляется со знаком "минус"!!!

Перемещение при равноускоренном движении

Дополнительная формула, которую называют безвременной

Формула в координатах


Связь со средней скоростью

При равноускоренном движении среднюю скорость можно рассчитывать как среднеарифметическое начальной и конечной скорости

Из этого правила следует формула, которую очень удобно использовать при решении многих задач

Соотношение путей

Если тело движется равноускоренно, начальная скорость нулевая, то пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел.

Главное запомнить

1) Что такое равноускоренное движение;
2) Что характеризует ускорение;
3) Ускорение - вектор. Если тело разгоняется ускорение положительное, если замедляется - ускорение отрицательное;
3) Направление вектора ускорения;
4) Формулы, единицы измерения в СИ

Упражнения

Два поезда идут навстречу друг другу: один - ускоренно на север, другой - замедленно на юг. Как направлены ускорения поездов?

Одинаково на север. Потому что у первого поезда ускорение совпадает по направлению с движением, а у второго - противоположное движению (он замедляется).

Равноускоренное движение - это движение с ускорением, вектор которого не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту.

Рассмотрим последний случай более подробно. В любой точке траектории на камень действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.

Движение тела, брошенного под углом к горизонту, можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y - равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Формула для скорости при равноускоренном движении:

Здесь v 0 - начальная скорость тела, a = c o n s t - ускорение.

Покажем на графике, что при равноускоренном движении зависимость v (t) имеет вид прямой линии.

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

a = v - v 0 t = B C A C

Чем больше угол β , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: v 0 = - 2 м с; a = 0 , 5 м с 2 .

Для второго графика: v 0 = 3 м с; a = - 1 3 м с 2 .

По данному графику можно также вычислить перемещение тела за время t . Как это сделать?

Выделим на графике малый отрезок времени ∆ t . Будем считать, что он настолько мал, что движение за время ∆ t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆ t . Тогда, перемещение ∆ s за время ∆ t будет равно ∆ s = v ∆ t .

Разобьем все время t на бесконечно малые промежутки ∆ t . Перемещение s за время t равно площади трапеции O D E F .

s = O D + E F 2 O F = v 0 + v 2 t = 2 v 0 + (v - v 0) 2 t .

Мы знаем, что v - v 0 = a t , поэтому окончательная формула для перемещения тела примет вид:

s = v 0 t + a t 2 2

Для того, чтобы найти координату нахождения тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты при равноускоренном движении выражает закон равноускоренного движения.

Закон равноускоренного движения

Закон равноускоренного движения

y = y 0 + v 0 t + a t 2 2 .

Еще одна распространенная задача, которая возникает при анализе равноускоренного движения - нахождение перемещения при заданных значениях начальной и конечной скоростей и ускорения.

Исключая из записанных выше уравнений t и решая их, получаем:

s = v 2 - v 0 2 2 a .

По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:

v = v 0 2 + 2 a s .

При v 0 = 0 s = v 2 2 a и v = 2 a s

Важно!

Величины v , v 0 , a , y 0 , s , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter