Скорость тела при движении по наклонной плоскости. Движение по наклонной плоскости

Аналогично рычагу , наклонные плоскости уменьшают усилие, необходимое для подъема тел. Например, бетонный блок весом 45 килограммов поднять руками довольно сложно, однако втащить его наверх по наклонной плоскости вполне возможно. Вес тела, размещенного на наклонной плоскости, раскладывается на две составляющие, одна из которых параллельна, а другая перпендикулярна ее поверхности. Для перемещения блока вверх по наклонной плоскости человек должен преодолеть только параллельную составляющую, величина которой растет с увеличением угла наклона плоскости.

Наклонные плоскости весьма разнообразны по конструктивному выполнению. Например, винт состоит из наклонной плоскости (резьбы), обвивающей по спирали его цилиндрическую часть. При вворачивании винта в деталь, его резьба проникает в тело детали, образуя очень прочное соединение за счет большого трения между деталью и витками резьбы. Тиски преобразуют действие рычага и вращательное движение винта в линейную сдавливающую силу. По такому же принципу работает и домкрат, используемый для подъема тяжелых грузов.

Силы на наклонной плоскости

У тела, находящегося на наклонной плоскости, сила тяжести действует параллельно и перпендикулярно ее поверхности. Для перемещения тела вверх по наклонной плоскости необходима сила, равная по величине составляющей силы тяжести, параллельной поверхности плоскости.

Наклонные плоскости и винты

Родство винта с наклонной плоскостью легко проследить, если обернуть цилиндр разрезанным по диагонали листом бумаги. Образующаяся спираль идентична по расположению резьбе винта.

Силы, действующие на винт

При повороте винта его резьба создает очень большую силу, приложенную к материалу детали, в которую он ввернут. Эта сила тащит винт вперед, если он поворачивается по часовой стрелке, и назад, если он поворачивается против часовой стрелки.

Винт для подъема тяжестей

Вращающиеся винты домкратов развивают огромную силу, позволяя им поднимать столь тяжелые тела как легковые или грузовые автомобили. При повороте центрального винта рычагом два конца домкрата стягиваются вместе, производя необходимый подъем.

Наклонные плоскости для расщепления

Клин состоит из двух наклонных плоскостей, соединенных своими основаниями. При забивании клина в дерево наклонные плоскости развивают боковые силы, достаточные для расщепления самых прочных пиломатериалов.

Сила и работа

Несмотря на то, что наклонная плоскость может облегчить задачу, она не уменьшает количество работы, требующееся для ее выполнения. Подъем бетонного блока весом 45 кг (W) на 9 метров вертикально вверх (дальний рисунок справа) требует совершения работы 45x9 килограммометров, что соответствует произведению веса блока на величину перемещения. Когда блок находится на наклонной плоскости с углом наклона 44,5°, сила (F), необходимая для втаскивания блока, уменьшается до 70 процентов от его веса. Хотя это и облегчает перемещение блока, зато теперь, чтобы, поднять блок на высоту 9 метров, его необходимо тащить по плоскости 13 метров. Другими словами выигрыш в силе равен высоте подъема (9 метров), деленной на длину перемещения по наклонной плоскости (13 метров).

Пусть небольшое тело находится на наклонной плоскости с углом наклона a (рис. 14.3,а ). Выясним: 1) чему равна сила трения, если тело скользит по наклонной плоскости; 2) чему равна сила трения, если тело лежит неподвижно; 3) при каком минимальном значении угла наклона a тело начинает соскальзывать с наклонной плоскости.

а) б)

Сила трения будет препятство­вать движению, следовательно, она будет направлена вверх по наклонной плоскости (рис. 14.3,б ). Кроме силы трения, на тело действуют еще сила тяжести и сила нормальной реакции . Введем систему координат ХОУ , как по­казано на рисунке, и найдем проекции всех указанных сил на коор­динатные оси:

Х : F трХ = –F тр, N X = 0, mg X = mg sina;

Y : F трY = 0, N Y = N , mg Y = –mg cosa.

Поскольку ускоряться тело может только по наклонной плоскости, то есть вдоль оси X , то очевидно, что проекция вектора ускорения на ось Y всегда будет равна нулю: а Y = 0, а значит, сумма проекций всех сил на ось Y также должна равняться нулю:

F трY + N Y + mg Y = 0 Þ 0 + N – mg cosa = 0 Þ

N = mg cosa. (14.4)

Тогда сила трения скольжения согласно формуле (14.3) равна:

F тр.ск = mN = mmg cosa. (14.5)

Если тело покоится , то сумма проекций всех сил, действующих на тело, на ось Х должна равняться нулю:

F трХ + N Х + mg Х = 0 Þ –F тр + 0 + mg sina = 0 Þ

F тр.п = mg sina. (14.6)

Если мы будем постепенно увеличивать угол наклона, то величина mg sina будет постепенно увеличиваться, а значит, будет уве­личиваться и сила трения покоя, которая всегда «автоматически подстраивается» под внешнее воздействие и компенсирует его.

Но, как мы знаем, «возможности» силы трения покоя не безгранич­ны. При каком-то угле a 0 весь «ресурс» силы трения покоя будет исчерпан: она достигнет своего максимального значения, равного силе трения скольжения. Тогда будет справедливо равенство:

F тр.ск = mg sina 0 .

Подставив в это равенство значение F тр.ск из формулы (14.5), получим: mmg cosa 0 = mg sina 0 .

Разделив обе части последнего равенства на mg cosa 0 , получим:

Þ a 0 = arctgm.

Итак, угол a, при котором начинается скольжение тела по наклонной плоскости, задается формулой:

a 0 = arctgm. (14.7)

Заметим, что если a = a 0 , то тело может или лежать неподвижно (если к нему не прикасаться), или скользить с постоянной скоростью вниз по наклонной плоскости (если его чуть-чуть толкнуть). Если a < a 0 , то тело «стабильно» неподвижно, и легкий толчок не произведет на него никакого «впечатления». А если a > a 0 , то тело будет соскальзывать с наклонной плоскости с ускорением и безо всяких толчков.

Задача 14.1. Человек везет двое связанных между собой саней (рис. 14.4,а ), прикладывая силу F под углом a к горизонту. Массы саней одинаковы и равны т . Коэффициент трения полозьев по снегу m. Найти ускорение саней и силу натяжения Т веревки между санями, а также силу F 1 , с которой должен тянуть веревку человек для того, чтобы сани двигались равномерно.

F a m m а) б) Рис. 14.4
а = ? Т = ? F 1 = ?

Решение . Запишем второй закон Ньютона для каждых саней в проекциях на оси х и у (рис. 14.4,б ):

I у : N 1 + F sina – mg = 0, (1)

x : F cosa – T – mN 1 = ma ; (2)

II у : N 2 – mg = 0, (3)

x : T – mN 2 = ma . (4)

Из (1) находим N 1 = mg – F sina, из (3) и (4) находим Т = mmg+ + ma. Подставляя эти значения N 1 и Т в (2), получаем

.

Подставляя а в (4), получаем

T = mN 2 + ma = mmg + та =

Mmg + т .

Чтобы найти F 1 , приравняем выражение для а к нулю:

Ответ : ; ;

.

СТОП! Решите самостоятельно: В1, В6, С3.

Задача 14.2. Два тела массами т и М связаны нитью, как показано на рис. 14.5,а . С каким ускорением движется тело М , если коэффициент трения о поверхность стола m. Каково натяжение нити Т ? Какова сила давления на ось блока?

т М m Решение. Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 (рис. 14.5,б ), учитывая, что : х 1: Т – mMg = Ма , (1) х 2: mg – T = ma . (2) Решая систему уравнений (1) и (2), находим:
а = ? Т = ? R = ?

Если грузы не движутся, то .

Ответ : 1) если т < mМ , то а = 0, Т = mg , ; 2) если т ³ mМ , то , , .

СТОП! Решите самостоятельно: В9–В11, С5.

Задача 15.3. Два тела массами т 1 и т 2 связаны нитью, перекинутой через блок (рис. 14.6). Тело т 1 находится на наклонной плоскости с углом наклона a. Коэффициент трения о плоскость m. Тело массой т 2 висит на нити. Найти ускорение тел, силу натяжения нити и силу давления блока на ось при условии, когда т 2 < т 1 . Считать tga > m.

Рис. 14.7

Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 , учитывая, что и :

х 1: т 1 g sina – Т – mm 1 g cosa = m 1 a ,

х 2: T – m 2 g = m 2 a .

, .

Так как а >0, то

Если неравенство (1) не выполняется, то груз т 2 точно не движется вверх! Тогда возможны еще два варианта: 1) система неподвижна; 2) груз т 2 движется вниз (а груз т 1 , соответственно, вверх).

Предположим, что груз т 2 движется вниз (рис. 14.8).

Рис. 14.8

Тогда уравнения второго закона Ньютона на оси х 1 и х 2 будут иметь вид:

х 1: Т – т 1 g sina mm 1 g cosa = m 1 a ,

х 2: m 2 g – Т = m 2 a .

Решая эту систему уравнений, находим:

, .

Так как а >0, то

Итак, если выполняется неравенство (1), то груз т 2 едет вверх, а если выполняется неравенство (2), то – вниз. Следовательно, если не выполняется ни одно из этих условий, т.е.

,

система неподвижна.

Осталось найти силу давления на ось блока (рис. 14.9). Силу давления на ось блока R в данном случае можно найти как диагональ ромба АВСD . Так как

ÐADC = 180° – 2 ,

где b = 90°– a, то по теореме косинусов

R 2 = .

Отсюда .

Ответ :

1) если , то , ;

2) если , то , ;

3) если , то а = 0; Т = т 2 g .

Во всех случаях .

СТОП! Решите самостоятельно: В13, В15.

Задача 14.4. На тележку массой М действует горизонтальная сила F (рис. 14.10,а ). Коэффициент трения между грузом т и тележкой равен m. Определить ускорение грузов. Какой должна быть минимальная сила F 0 , чтобы груз т начал скользить по тележке?

M , т F m а) б) Рис. 14.10
а 1 = ? а 2 = ? F 0 = ?

Решение . Сначала заметим, что сила, приводящая груз т в движение, – это сила трения покоя , с которой тележка действует на груз. Максимально возможное значение этой силы равно mmg .

По третьему закону Ньютона груз действует на тележку с такой же по величине силой – (рис. 14.10,б ). Проскальзывание начинается в тот момент, когда уже достигла своего максимального значения , но система еще движется как одно тело массой т +М с ускорением . Тогда по второму закону Ньютона

Движение тела по наклонной плоскости - это классический пример движения тела под действием нескольких несонаправленных сил. Стандартный метод решения задач о такого рода движении состоит в разложении векторов всех сил по компонентам, направленным вдоль координатных осей. Такие компоненты являются линейно независимыми. Это позволяет записать второй закон Ньютона для компонент вдоль каждой оси отдельно. Таким образом второй закон Ньютона, представляющий собой векторное уравнение, превращается в систему из двух (трех для трехмерного случая) алгебраических уравнений.

Силы, действующие на брусок,
случай ускоренного движения вниз

Рассмотрим тело, которое соскальзывает вниз по наклонной плоскости. В этом случае на него действуют следующие силы:

  • Сила тяжести mg , направленная вертикально вниз;
  • Сила реакции опоры N , направленная перпендикулярно плоскости;
  • Сила трения скольжения F тр, направлена противоположно скорости (вверх вдоль наклонной плоскости при соскальзывании тела)

При решении задач, в которых фигурирует наклонная плоскость часто удобно ввести наклонную систему координат, ось OX которой направлена вдоль плоскости вниз. Это удобно, потому что в этом случае придется раскладывать на компоненты только один вектор - вектор силы тяжести mg , а вектора силы трения F тр и силы реакции опоры N уже направлены вдоль осей. При таком разложении x-компонента силы тяжести равна mg sin(α ) и соответствует «тянущей силе», ответственной за ускоренное движение вниз, а y-компонента - mg cos(α ) = N уравновешивает силу реакции опоры, поскольку вдоль оси OY движение тела отсутствует.
Сила трения скольжения F тр = µN пропорциональна силе реакции опоры. Это позволяет получить следующее выражение для силы трения: F тр = µmg cos(α ). Эта сила противонаправлена «тянущей» компоненте силы тяжести. Поэтому для тела, соскальзывающего вниз , получаем выражения суммарной равнодействующей силы и ускорения:

F x = mg (sin(α ) – µ cos(α ));
a x = g (sin(α ) – µ cos(α )).

Не трудно видеть, что если µ < tg(α ), то выражение имеет положительный знак и мы имеем дело с равноускоренным движением вниз по наклонной плоскости. Если же µ > tg(α ), то ускорение будет иметь отрицательный знак и движение будет равнозамедленным. Такое движение возможно только в случае, если телу придана начальная скорость по направлению вниз по склону. В этом случае тело будет постепенно останавливаться. Если при условии µ > tg(α ) предмет изначально покоится, то он не будет начинать соскальзывать вниз. Здесь сила трения покоя будет полностью компенсировать «тянущую» компоненту силы тяжести.



Когда коэффициент трения в точности равен тангенсу угла наклона плоскости: µ = tg(α ), мы имеем дела с взаимной компенсацией всех трех сил. В этом случае, согласно первому закону Ньютона тело может либо покоиться, либо двигаться с постоянной скоростью (При этом равномерное движение возможно только вниз).

Силы, действующие на брусок,
скользящий по наклонной плоскости:
случай замедленного движения вверх

Однако, тело может и заезжать вверх по наклонной плоскости. Примером такого движения является движение хоккейной шайбы вверх по ледяной горке. Когда тело движется вверх, то и сила трения и «тянущая» компонента силы тяжести направлены вниз вдоль наклонной плоскости. В этом случае мы всегда имеем дело с равнозамедленным движением, поскольку суммарная сила направлена в противоположную скорости сторону. Выражение для ускорения для этой ситуации получается аналогичным образом и отличается только знаком. Итак для тела, скользящего вверх по наклонной плоскости , имеем.

Тело, которое соскальзывает вниз по наклонной плоскости . В этом случае на него действуют следующие силы:

Сила тяжести mg, направленная вертикально вниз;

Сила реакции опоры N, направленная перпендикулярно плоскости;

Сила трения скольжения Fтр, направлена противоположно скорости (вверх вдоль наклонной плоскости при соскальзывании тела).

Введем наклонную систему координат, ось OX которой направлена вдоль плоскости вниз. Это удобно, потому что в этом случае придется раскладывать на компоненты только один вектор - вектор силы тяжести mg, а вектора силы трения Fтр и силы реакции опоры N уже направлены вдоль осей. При таком разложении x-компонента силы тяжести равна mg sin(α) и соответствует «тянущей силе», ответственной за ускоренное движение вниз, а y-компонента - mg cos(α) = N уравновешивает силу реакции опоры, поскольку вдоль оси OY движение тела отсутствует.

Сила трения скольжения Fтр = µN пропорциональна силе реакции опоры. Это позволяет получить следующее выражение для силы трения: Fтр = µmg cos(α). Эта сила противонаправлена «тянущей» компоненте силы тяжести. Поэтому для тела, соскальзывающего вниз, получаем выражения суммарной равнодействующей силы и ускорения:

Fx = mg(sin(α) – µ cos(α));

ax = g(sin(α) – µ cos(α)).

ускорение:

скорость равна

v=ax*t=t*g(sin(α) – µ cos(α))

через t=0.2 с

скорость равна

v=0.2*9.8(sin(45)-0.4*cos(45))=0.83 м/с

Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

Fт=GMm/R2 (2.28)

где М - масса Земли; R - радиус Земли.

Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле (2,28) модуль ускорения свободного падения g находят по формуле

g=Fт/m=GM/R2. (2.29)

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде

В § 5 было отмечено, что поскольку Земля не шар, а эллипсоид вращения, ее полярный радиус меньше экваториального. Из формулы (2.28) видно, что по этой причине сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса и т. п. Тела, ограничивающие движение других тел, называют связями. Под действием силы тяжести связи деформируются и сила реакции деформированной связи по третьему закону Ньютона уравновешивает силу тяжести.

В § 5 отмечалось также, что на ускорение свободного падения влияет вращение Земли. Это влияние объясняется так. Системы отсчета, связанные с поверхностью Земли (кроме двух, связанных с полюсами Земли), не являются, строго говоря, инерциальными системами отсчета - Земля вращается вокруг своей оси, а вместе с ней движутся по окружностям с центростремительным ускорением и такие системы отсчета. Эта неинерциальность систем отсчета проявляется, в частности, в том, что значение ускорения свободного падения оказывается различным в разных местах Земли и зависит от географической широты того места, где находится связанная с Землей система отсчета, относительно которой определяется ускорение свободного падения.

Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга. Поэтому при не очень точных расчетах можно пренебречь неинерциальностью систем отсчета, связанных с поверхностью Земли, а также отличием формы Земли от сферической, и считать, что ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с2.

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

Установлено, что на высоте 300 км над поверхностью Земли ускорение свободного падения меньше, чем у поверхности Земли, на 1 м/с2.

Следовательно, вблизи Земли (до высот нескольких километров) сила тяжести практически не изменяется, а потому свободное падение тел вблизи Земли является движением равноускоренным.

Вес тела. Невесомость и перегрузки

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес - это упругая сила, приложенная к опоре или подвесу (т. е. к связи).



Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести Fт только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести Fт=mg и сила упругости Fyп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил Fт и Fуп дает равнодействующую, вызывающую ускорение тела, т. е.

Fт + Fуп=mа.

Согласно приведенному выше определению понятия "вес", можно написать, что Р=-Fyп. с учетом того, что Fт=mg, следует, что mg-mа=-Fyп. Следовательно, Р=m(g-а).

Силы Fт и Fуп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю

Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то

Р = m = m(g+а).

Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

При свободном падении a=g. следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости. Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.

На поверхности Земли сила тяжести (гравитация ) постоянна и равна произведению массы падающего тела на ускорение свободного падения: F g = mg

Следует заметить, что ускорение свободного падения величина постоянная: g=9,8 м/с 2 , и направлена к центру Земли. Исходя из этого можно сказать, что тела с разной массой будут падать на Землю одинаково быстро. Как же так? Если бросить с одинаковой высоты кусочек ваты и кирпич, то последний проделает свой путь до земли быстрее. Не забывайте о сопротивлении воздуха! Для ваты оно будет существенным, поскольку ее плотность очень мала. В безвоздушном пространстве кирпич и вата упадут одновременно.

Шар движется по наклонной плоскости длиной 10 метров, угол наклона плоскости 30°. Какова будет скорость шара в конце плоскости?

На шар действует только сила тяжести F g , направленная вниз перпендикулярно к основанию плоскости. Под действием этой силы (составляющей, направленной вдоль поверхности плоскости) шар будет двигаться. Чему будет равна составляющая силы тяжести, действующей вдоль наклонной плоскости?

Для определения составляющей необходимо знать угол между вектором силы F g и наклонной плоскостью.

Определить угол довольно просто:

  • сумма углов любого треугольника равна 180°;
  • угол между вектором силы F g и основанием наклонной плоскости равен 90°;
  • угол между наклонной плоскостью и ее основанием равен α

Исходя из вышесказанного, искомый угол будет равен: 180° - 90° - α = 90° - α

Из тригонометрии:

F g накл = F g ·cos(90°-α)

Sinα = cos(90°-α)

F g накл = F g ·sinα

Это действительно так:

  • при α=90° (вертикальная плоскость) F g накл = F g
  • при α=0° (горизонтальная плоскость) F g накл = 0

Определим ускорение шара из известной формулы:

F g ·sinα = m·a

A = F g ·sinα/m

A = m·g·sinα/m = g·sinα

Ускорение шара вдоль наклонной плоскости не зависит от массы шара, а только от угла наклона плоскости.

Определяем скорость шара в конце плоскости:

V 1 2 - V 0 2 = 2·a·s

(V 0 =0) - шар начинает движение с места

V 1 2 = √2·a·s

V = 2·g·sinα·S = √2·9,8·0,5·10 = √98 = 10 м/с

Обратите внимание на формулу! Скорость тела в конце наклонной плоскости будет зависеть только от угла наклона плоскости и ее длины.

В нашем случае скорость 10 м/с в конце плоскости будет иметь и бильярдный шар, и легковой автомобиль, и самосвал, и школьник на санках. Конечно же, трение мы не учитываем.