Удивительные органы чувств у животных. Органы чувств

11 12 ..

10. Органы чувств животных

Рецепторные аппараты (органы чувств) воспринимают раздражение, как из внешней, так и из внутренней среды, трансформируют световой, тепловой, звуковой виды энергии в нервный процесс.

Зрительный анализатор состоит из глаза, зрительных нервов, нервных центров в подкорке и коре головного мозга.

Глаз (Oculus ) – орган зрения, периферическая часть зрительного анализатора. Он состоит из глазного яблока и вспомогательного аппарата, расположенных в глазнице черепа (рис.73).

Глазное яблоко – это парные образования, которые обеспечивают зрительную ориентацию животных благодаря способности улавливать излучаемый или отражённый свет от объектов внешнего мира и воспринимать их. Цветовое зрение свойственно лошадям, крупному рогатому скоту. Глазное яблоко имеет шаровидную форму и состоит из трёх оболочек: наружной – фиброзной или белочной, средней – сосудистой и внутренней сетчатой. Полость глазного яблока заполнена стекловидным телом. Это совершенно прозрачная студенистая масса заключена в строму из тончайших волоконец. Наружная оболочка глазного яблока белого цвета. Спереди глаза образует прозрачную, очень тонкую пластинку (роговица), занимающую пятую часть площади глаза. Глазное яблоко спереди покрыто соединительнотканной оболочкой бледно-розового цвета (коньюктива), переходящей на внутреннюю поверхность век, фиксирует передний край глазного яблока в глазнице.

Под коньюктивой лежат слёзные железы, выделяющие прозрачную жидкость для увлажнения коньюктивы и роговицы.

Сосудистая оболочка глаза позади роговицы образует радужку, имеющую своеобразное окрашивание, обуславливающее цвет глаза. В центре радужки имеется отверстие (зрачок), в котором расположено прозрачное твёрдое тело – хрусталик.

Сетчатая оболочка глаза нежная, тонкая, прозрачная, розоватого цвета. После смерти животного быстро мутнеет. Зрительная часть сетчатки имеет пигментный слой.

В глазное яблоко с задненижней поверхности входит крупный зрительный нерв (зрительный сосок), из центра которого или рядом с ним выходят сосуды сетчатки глаза.

К защитным органам относятся: орбита, периорбита, ресницы, веки, слёзный аппарат.

Органы слуха.

Ухо (Auris ) – орган слуха и равновесия позвоночных животных. Оно воспринимает звуковые колебания, трансформируя их в нервное возбуждение, Определяет изменение положения тела. Ухо состоит из наружного, среднего и внутреннего уха (рис.74).

Наружное ухо собирает и концентрирует звуковые волны. К нему относятся ушная раковина с мышцами и наружный слуховой проход. Ушная раковина твёрдая и состоит из эластического хряща, покрытого кожной складкой. Наружный слуховой проход с костной основой, снаружи в виде кольцевидного хряща, выстлан кожей и в начальной части покрыты волосами.

Среднее ухо расположено в барабанной полости каменистой кости содержит четыре слуховые косточки: молоточек, наковальню, чечевицеобразную косточку и стремечко. Из полости среднего уха выходят слуховые трубы, идущие в глотку. Полость выстлана слизистой оболочкой. На медиальной стенке барабанной полости имеется два отверстия, ведущие во внутреннее ухо: окно преддверия, закрытое стремечком, и окно улитки, закрытое тонкой внутренней барабанной перепонкой. В дорсальной стенке проходит канал лицевого нерва.

Внутреннее ухо расположено в скалистой части каменистой кости, представлено костным лабиринтом, в котором расположен перепончатый лабиринт включает костную улитку, три костных полукружных канала и костное преддверие. Перепончатый лабиринт включает в себе три перепончатых полукружных канала,овальный и круглые мешочки и перепончатую улитку. Перепончатый лабиринт заполнен эндолимфой и замкнут.

Колебания наружной барабанной перепонки через систему косточек среднего уха передаются на овальное окошечко и вызывают движение пирамиды внутри костного лабиринта, вызывая колебания перепончатого лабиринта и эндолимфы внутри его. Колебания эндолимфы улавливают основная мембрана, покровная пластинка и слуховые клетки, в которых разветвляются дендриты слухового нерва.

Органы вкуса и обоняния.

Рецепторный аппарат вкусового анализатора, воспринимающий вкусовые раздражения, находятся во вкусовых луковицах листовидных, валиковидных, грибовидных сосочков, расположенных на боковых поверхностях языка. Во вкусовых клетках луковиц, поддерживаемых опорными клетками, при попадании пищи возникает нервный процесс возбуждения. Изолированные раздражители действуют на отдельные сосочки: валиковидные, воспринимающие горький вкус, грибовидные - сладкий.

При помощи обоняния животные находят пищу, спасаются от врага, метят территорию, узнают полового партнера. Рецепторный аппарат обонятельного анализатора находится в обонятельной области слизистой оболочки лабиринта решетчатой кости. Обонятельные рецепторы – клетки, непосредственно воспринимающие запах. Запахи, поступающие с вдыхаемым воздухом через нос или хоаны во время еды, вызывают раздражение обонятельных клеток и возникновение нервного импульса. По обонятельному нерву он поступает в обонятельные луковицы, а оттуда полуобработанная информация поступает в мозговые центры, где формируется ощущение действующего запаха.

Кожный анализатор.

Рецепторы кожи могут воспринимать раздражители контактные и дистантые, тепло, холод, слабые и сильные от соприкосновения, давления и связанные с ощущением боли.

Чувство боли является одним из защитных приспособлений живого организма. Оно предупреждает организм о грозящей ему опасности. Чувство боли возникает в нервных клетках коры головного мозга, в частности в теменных долях, куда доходят болевые сигналы по нервным проводникам от рецепторного аппарата, воспринимающего болевые раздражения. В коре не только формируется чувство боли, но и вырабатываются акты поведения, облегчающие боль. Кожные рецепторы, воспринимающие температуру внешней среды играют важную роль для рефлекторного регулирования температуры тела организма.

Не о б ы чн ые орг ан ы ч у в с тв

В этой публикации мы поговорим о необычных и удивительных органах чувств, которые присутствуют у некоторых животных, птиц и насекомых. Давайте рассмотрим их немного ближе и почитаем, чем же они так необычны!


1.


Электронный клюв
Поначалу описание утконоса - млекопитающего с утиным клювом, которое высиживает яйца, было воспринято как розыгрыш. Ну какой смысл в нелепом утином клюве?

Утконос питается мелкими беспозвоночными, живущими на дне рек и озер. Когда он ныряет, его глаза, ноздри и уши полностью закрыты - чтобы вода не попадала. Клюв утконоса буквально напичкан чувствительными сенсорами, способными улавливать даже самые слабые электрические поля, возникающие при движении живых организмов.

Наряду с улавливанием электрических полей, клюв утконоса также очень чувствителен к волнениям, возникающим в толще воды. Два этих чувства - электрорецепция и механорецепция, позволяют утконосу определять местоположение своей жертвы с поразительной точностью.


2.


Эхолокация
Летучие мыши традиционно считаются слепыми по сравнению с обычными животными. Если глаза летучей мыши намного меньше, чем у других хищников, и далеко не такие зоркие, то только потому, что эти млекопитающие развили в себе способность охотиться при помощи звука.

Эхолокация летучих мышей заключается в умении пользоваться высокочастотными звуковыми импульсами и в способности улавливать отраженный сигнал, по которому они оценивают расстояние и направление до окружающих их предметов. При этом, вычисляя скорость насекомых, они оценивают свою жертву не только по времени, затраченному на прохождении импульса туда и обратно, но и учитывают эффект Допплера.

Будучи ночными животными и охотясь в основном на мелких насекомых, летуче мыши нуждаются в способностях, не зависящих от света. Люди обладают слабой рудиментарной формой этого чувства (мы можем понять, с какой стороны пришел звук), однако некоторые индивиды развивают эту способность в настоящую эхолокацию.


3.


Инфракрасное зрение
Когда полиция преследует ночью преступников, или спасатели ищут людей под завалами, они часто прибегают к помощи устройств с инфракрасным изображением. Значительная часть теплового излучения объектов при комнатной температуре отображается в инфракрасном спектре, что может использоваться для оценки окружающих объектов на основе их температуры.

Некоторые виды змей, охотящихся на теплокровных животных, имеют на голове специальные углубления, позволяющие улавливать инфракрасное излучение. Даже после ослепления змея может продолжать безошибочно охотиться, пользуясь своим инфракрасным зрением. Примечательно, что на молекулярном уровне инфракрасное зрение змеи абсолютно не связано с обычным зрением видимого спектра, и должно развиваться отдельно.


4.


Ультрафиолет
Многие люди согласятся с тем, что растения прекрасны. Однако, в то время как для нас растения - всего лишь украшение, они жизненно необходимы не только самим себе, но и насекомым, которые ими питаются. Цветы, которые опыляются насекомыми, «заинтересованы» в том, чтобы привлекать этих насекомых и помогать им находить правильный путь. Для пчёл внешний вид цветка может означать намного больше, чем способен разглядеть человеческий глаз.

Так, если посмотреть на цветок в ультрафиолетовом спектре, то можно увидеть скрытые узоры, предназначенные для того, чтобы указывать пчёлам нужное направление.

Пчёлы видят мир совсем не так как мы. В отличие от нас, они различают несколько спектров видимого света (голубой и зеленый), и имеют специальные группы ячеек для улавливания ультрафиолета. Один профессор ботаники как-то сказал: «Растения используют цвета, как шлюхи губную помаду, когда хотят привлечь клиента».


5.


Магнетизм
Пчёлы также обладают второй чувственной хитростью, спрятанной в их маленьких пушистых рукавах. Для пчелы найти улей в конце целого дня непрерывных полетов - это вопрос жизни и смерти. Для улья, в свою очередь, очень важно, чтобы пчела помнила, где находится источник еды и могла найти к нему дорогу. Но, несмотря на то, что пчёлы могут многое, их вряд ли можно назвать невероятно одаренными умственными способностями.

Для навигации они должны использовать большой объем различной информации, в том числе источники, спрятанные в собственной брюшной полости. Мельчайшее колечко магнетических частиц, магнитных гранул железа, скрытых в пчелином животе, позволяют ей ориентироваться в магнитном поле Земли и определять своё местоположение.


6.


Поляризация
Когда колебания световых волн происходят в одном направлении, это называетсяполяризацией. Люди не могут обнаружить поляризацию света без помощи специального оборудования, потому что светочувствительные клетки нашего глаза расположены случайным образом (неравномерно). У осьминога эти клетки упорядочены. А чем ровнее расположены клетки, тем ярче поляризационный свет.

Как же это позволяет осьминогу охотиться? Одна из лучших форм маскировки - быть прозрачным, и огромное количество морских обитателей практически невидимы. Однако под водной толщей происходит поляризация света, и некоторые осьминоги этим пользуются. Когда такой свет проходит сквозь тело прозрачного животного его поляризация меняется, осьминог это замечает - и хватает добычу.


7.


Чувствительный панцирь
Люди обладают способностью ощущать кожей, потому что по всей её поверхности расположены чувствительные клетки. Если вы оденете защитный костюм, вы потеряете большую часть чувствительности. Это может доставить вам массу неудобств, однако для охотящегося паука это стало бы настоящей катастрофой.

Паку, как и другие членистоногие, имеют прочный экзоскелет, защищающий их тело. Но как же в этом случае они ощущают то, к чему прикасаются, как передвигаются, не ощущая ногами поверхности? Дело в том, что в их экзоскелете имеются мельчайшие отверстия, деформация которых позволяет определять оказываемые на панцирь силу и давление. Это дает паукам возможность ощущать окружающий их мир настолько сильно, насколько это только возможно.


8.


Вкусовые ощущения
В большинстве сообществ принято держать язык за зубами. К несчастью, для сома это не представляется возможным, ведь все его тело, по сути, представляет собой сплошной язык, укрытый вкусовыми чувствительными клетками. Более чем 175 тысяч таких клеток позволяют ощутить весь спектр проходящих через них вкусовых оттенков.

Способность улавливать тончайшие вкусовые нюансы дает этим рыбам возможность не только почувствовать присутствие добычи на значительном расстоянии, но и точно определить её местоположение, причем это все происходит в очень мутной воде - типичной среде обитания сомов.


9.


Слепой свет
Многие организмы, эволюционировавшие в тёмной среде обитания, имеют только рудиментарные, остаточные органы зрения, или даже полностью лишены глаз. В любой черной как смоль пещере от возможности видеть нет никакой пользы.

Пещерная рыба «Astyanax mexicanus» полностью утратила глаза, но взамен природа подарила ей возможность улавливать даже самые слабые изменения в освещении, которые только могут быть под скалистой толщей. Эта способность позволяет рыбке скрываться от хищников, так как особая шишковидная железа улавливает свет (а заодно и отвечает за чувство смены дня и ночи).

Эти рыбы имеют просвечивающееся тело, благодаря чему свет беспрепятственно проходит точно сквозь шишковидную железу, что помогает им найти укрытие.


10.


Точечное матричное зрение
В живой природе мы можем встретить потрясающее разнообразие форм и видов глаз. Большинство из них состоят из линз, фокусирующих свет на светочувствительных клетках (сетчатке), которые проецируют изображение окружающего нас мира. Для правильной фокусировки изображения линзы могут изменять форму, как у человека, перемещаться вперед и назад, как у осьминога, и использовать огромное количество других способов.

Так, например, представитель вида ракообразных «Copilia quadrata» пользуется непривычным методом для отображения окружающего мира. Этот рачок использует две зафиксированные линзы и подвижное чувствительное световое пятно. Перемещая чувствительный детектор, Copilia builds воспринимает изображение как серию пронумерованных точек, каждая из которых располагается на своем месте, в зависимости от интенсивности освещения.


11.

Единственный путь познания мира проходит через наши чувства. Следовательно, органы чувств - это основа для осмысления происходящего вокруг нас. Принято считать, что у нас пять чувств, но в действительности их не менее девяти, а может и больше, в зависимости от того, что мы понимаем под словом «чувство»…

Но, как бы там ни было, мир животных в этом плане готов посрамить любого из нас. Некоторые животные обладают способностями, которые присущи и людям, однако у зверей они значительно больше развиты, в связи с чем мы воспринимаем окружающую нас действительность абсолютно по-разному.

Электронный клюв

Поначалу описание утконоса - млекопитающего с утиным клювом, которое высиживает яйца, было воспринято как розыгрыш. Ну какой смысл в нелепом утином клюве?

Утконос питается мелкими беспозвоночными, живущими на дне рек и озер. Когда он ныряет, его глаза, ноздри и уши полностью закрыты - чтобы вода не попадала. Клюв утконоса буквально напичкан чувствительными сенсорами, способными улавливать даже самые слабые электрические поля, возникающие при движении живых организмов.

Наряду с улавливанием электрических полей, клюв утконоса также очень чувствителен к волнениям, возникающим в толще воды. Два этих чувства - электрорецепция и механорецепция, позволяют утконосу определять местоположение своей жертвы с поразительной точностью.

Эхолокация

Летучие мыши традиционно считаются слепыми по сравнению с обычными животными. Если глаза летучей мыши намного меньше, чем у других хищников, и далеко не такие зоркие, то только потому, что эти млекопитающие развили в себе способность охотиться при помощи звука.

Эхолокация летучих мышей заключается в умении пользоваться высокочастотными звуковыми импульсами и в способности улавливать отраженный сигнал, по которому они оценивают расстояние и направление до окружающих их предметов. При этом, вычисляя скорость насекомых, они оценивают свою жертву не только по времени, затраченному на прохождении импульса туда и обратно, но и учитывают эффект Допплера.

Будучи ночными животными и охотясь в основном на мелких насекомых, летуче мыши нуждаются в способностях, не зависящих от света. Люди обладают слабой рудиментарной формой этого чувства (мы можем понять, с какой стороны пришел звук), однако некоторые индивиды развивают эту способность в настоящую эхолокацию.

Инфракрасное зрение

Когда полиция преследует ночью преступников, или спасатели ищут людей под завалами, они часто прибегают к помощи устройств с инфракрасным изображением. Значительная часть теплового излучения объектов при комнатной температуре отображается в инфракрасном спектре, что может использоваться для оценки окружающих объектов на основе их температуры.

Некоторые виды змей, охотящихся на теплокровных животных, имеют на голове специальные углубления, позволяющие улавливать инфракрасное излучение. Даже после ослепления змея может продолжать безошибочно охотиться, пользуясь своим инфракрасным зрением. Примечательно, что на молекулярном уровне инфракрасное зрение змеи абсолютно не связано с обычным зрением видимого спектра, и должно развиваться отдельно.

Ультрафиолет

Многие люди согласятся с тем, что растения прекрасны. Однако, в то время как для нас растения - всего лишь украшение, они жизненно необходимы не только самим себе, но и насекомым, которые ими питаются. Цветы, которые опыляются насекомыми, «заинтересованы» в том, чтобы привлекать этих насекомых и помогать им находить правильный путь. Для пчёл внешний вид цветка может означать намного больше, чем способен разглядеть человеческий глаз.

Так, если посмотреть на цветок в ультрафиолетовом спектре, то можно увидеть скрытые узоры, предназначенные для того, чтобы указывать пчёлам нужное направление.

Пчёлы видят мир совсем не так как мы. В отличие от нас, они различают несколько спектров видимого света (голубой и зеленый), и имеют специальные группы ячеек для улавливания ультрафиолета. Один профессор ботаники как-то сказал: «Растения используют цвета, как шлюхи губную помаду, когда хотят привлечь клиента».

Магнетизм

Пчёлы также обладают второй чувственной хитростью, спрятанной в их маленьких пушистых рукавах. Для пчелы найти улей в конце целого дня непрерывных полетов - это вопрос жизни и смерти. Для улья, в свою очередь, очень важно, чтобы пчела помнила, где находится источник еды и могла найти к нему дорогу. Но, несмотря на то, что пчёлы могут многое, их вряд ли можно назвать невероятно одаренными умственными способностями.

Для навигации они должны использовать большой объем различной информации, в том числе источники, спрятанные в собственной брюшной полости. Мельчайшее колечко магнетических частиц, магнитных гранул железа, скрытых в пчелином животе, позволяют ей ориентироваться в магнитном поле Земли и определять своё местоположение.

Поляризация

Когда колебания световых волн происходят в одном направлении, это называетсяполяризацией. Люди не могут обнаружить поляризацию света без помощи специального оборудования, потому что светочувствительные клетки нашего глаза расположены случайным образом (неравномерно). У осьминога эти клетки упорядочены. А чем ровнее расположены клетки, тем ярче поляризационный свет.

Как же это позволяет осьминогу охотиться? Одна из лучших форм маскировки - быть прозрачным, и огромное количество морских обитателей практически невидимы. Однако под водной толщей происходит поляризация света, и некоторые осьминоги этим пользуются. Когда такой свет проходит сквозь тело прозрачного животного его поляризация меняется, осьминог это замечает - и хватает добычу.

Чувствительный панцирь

Люди обладают способностью ощущать кожей, потому что по всей её поверхности расположены чувствительные клетки. Если вы оденете защитный костюм, вы потеряете большую часть чувствительности. Это может доставить вам массу неудобств, однако для охотящегося паука это стало бы настоящей катастрофой.

Паку, как и другие членистоногие, имеют прочный экзоскелет, защищающий их тело. Но как же в этом случае они ощущают то, к чему прикасаются, как передвигаются, не ощущая ногами поверхности? Дело в том, что в их экзоскелете имеются мельчайшие отверстия, деформация которых позволяет определять оказываемые на панцирь силу и давление. Это дает паукам возможность ощущать окружающий их мир настолько сильно, насколько это только возможно.

Вкусовые ощущения

В большинстве сообществ принято держать язык за зубами. К несчастью, для сома это не представляется возможным, ведь все его тело, по сути, представляет собой сплошной язык, укрытый вкусовыми чувствительными клетками. Более чем 175 тысяч таких клеток позволяют ощутить весь спектр проходящих через них вкусовых оттенков.

Способность улавливать тончайшие вкусовые нюансы дает этим рыбам возможность не только почувствовать присутствие добычи на значительном расстоянии, но и точно определить её местоположение, причем это все происходит в очень мутной воде - типичной среде обитания сомов.

Слепой свет

Многие организмы, эволюционировавшие в тёмной среде обитания, имеют только рудиментарные, остаточные органы зрения, или даже полностью лишены глаз. В любой черной как смоль пещере от возможности видеть нет никакой пользы.

Пещерная рыба «Astyanax mexicanus» полностью утратила глаза, но взамен природа подарила ей возможность улавливать даже самые слабые изменения в освещении, которые только могут быть под скалистой толщей. Эта способность позволяет рыбке скрываться от хищников, так как особая шишковидная железа улавливает свет (а заодно и отвечает за чувство смены дня и ночи).

Эти рыбы имеют просвечивающееся тело, благодаря чему свет беспрепятственно проходит точно сквозь шишковидную железу, что помогает им найти укрытие.

Точечное матричное зрение

В живой природе мы можем встретить потрясающее разнообразие форм и видов глаз. Большинство из них состоят из линз, фокусирующих свет на светочувствительных клетках (сетчатке), которые проецируют изображение окружающего нас мира. Для правильной фокусировки изображения линзы могут изменять форму, как у человека, перемещаться вперед и назад, как у осьминога, и использовать огромное количество других способов.

Так, например, представитель вида ракообразных «Copilia quadrata» пользуется непривычным методом для отображения окружающего мира. Этот рачок использует две зафиксированные линзы и подвижное чувствительное световое пятно. Перемещая чувствительный детектор, Copilia builds воспринимает изображение как серию пронумерованных точек, каждая из которых располагается на своем месте, в зависимости от интенсивности освещения.

«Качества существуют лишь постольку, поскольку принято считать сладкое - сладким, горькое - горьким, горячее - горячим, а цвет - цветным. однако реально существуют лишь атомы и пустота». Демокрит, 460-370 гг. до н.э. «Тетралогии»

Ночное зрение. Огромные глаза тонкого лори помогают ему ориентироваться, передвигаясь в полной темноте по ночному лесу. Лори - ночные животные, и в поисках добычи они полагаются главным образом на обоняние. Для передачи информации сородичам они используют пахучие метки и звуки.

Глаз-разведчик. Наши знания о природе света свидетельствуют, что глаза слепня не различают тонкие детали, но, поскольку работа головного мозга изучена недостаточно, мы не можем воспроизвести то, что видит эта муха.

Органы чувств животных не похожи на человеческие. Одни животные видят свет, невидимый для нас. Другие слышат звуки, которые не воспринимает наше ухо. Некоторые животные чувствительны к магнитному полю Земли и к электрическому полю. Дельфины воспроизводят трехмерную картину окружающего мира, гораздо более детальную, чем видит человек, однако при этом они используют эхолокаторы, улавливающие отражения звуков, издаваемых ими самими. Картина «атомов и пустоты», создаваемая дельфином путем преобразования отраженных эхосигналов, почти наверняка сильно отличается от той, которая создается у нас с помощью глаз и головного мозга. Вероятно, мы никогда не сможем воспринимать мир таким, каким его видит дельфин, но, изучая поведение животных, мы можем выяснить, на какие раздражители они реагируют и как их органы чувств помогают им выжить. Демокрит был бы удивлен такими скромными успехами в изучении жизни животных.

Охота по слуху. Эта летучая мышь - подковонос - во время охоты издает звуки, которые, отражаясь от летающих насекомых, помогают ей определить их местонахождение. Один звук, повторенный 10 раз в секунду, позволяет мыши обнаружить насекомое. «Выйдя на жертву», она издает глиссандо - последовательность сливающихся звуков, что помогает сделать точный бросок.

Органы чувств змеи. Габонская гадюка, или кассава, «видит» в темноте, улавливая изменения температуры при помощи термодатчиков ямок на морде. Уши воспринимают только низкие частоты. Органом обоняния служит раздвоенный язык, которым змея «пробует» воздух.

Только обоняние и осязание. У морских звезд нет ни глаз, ни ушей; ползая по морскому дну в поисках пищи, они полагаются на осязание и обоняние.

Костный купол. Куполообразный череп кита-белухи - часть его эхолокационной передающей системы, служащей линзой, фокусирующей звуки в узкий пучок.

Еще интересные статьи

Чтобы поведение было эффективным, животные должны вести себя в соответствии с обстоятельствами. Иными словами, сложные движения, которые мы называем поведением, результативны лишь в том случае, если животное совершает их в нужный момент и в нужном месте. Однако чтобы поступать таким образом, животные должны быть информированы о том, что происходит во внешнем мире. Эта информация поступает через органы чувств и служит одной из побудительных причин для выполнения тех или иных действий. видит, что хозяин надевает шляпу, и лает, предвкушая прогулку, а оказавшись на улице, бегает и принюхивается. В этом проявляется ее реакция на окружающий мир; следовательно, изучение закономерностей поведения животных логично начать с изучения внешних раздражителей, на которые они способны реагировать.

Какие типы раздражителей воспринимают животные? Прежде всего, не обязательно те же раздражители, на которые реагирует человек. Недооценка этого факта может привести к ошибочным заключениям. Так, по предложению одного правительственного чиновника было истрачено 2000 фунтов стерлингов на нафталин, чтобы избавиться от на посадочных дорожках аэродромов, где они сталкивались с реактивными самолетами. Чиновник не знал, что у птиц слабо развито обоняние - нафталин их нисколько не беспокоил.

Действительно, "окна в мир" не одинаковы у разных животных и у человека. В одних отношениях они много хуже наших, в других - несравненно лучше. А есть животные, реагирующие на такие раздражители, которые человек совсем не воспринимает и обнаруживает только с помощью специальных приборов. Пчелы, как известно, видят ультрафиолетовые лучи и реагируют на них, тогда как человек должен перевести их в какую-нибудь другую, воспринимаемую им форму.

Пока не обнаружено ни одного животного, которое "видело" бы инфракрасный свет при помощи глаз, однако "видеть" можно не только глазами. Инфракрасное излучение - это одна из форм теплоты, и некоторые животные, в особенности гремучие змеи и родственные им виды, обладают органами столь чувствительными к теплоте, что как бы "видят" ее. Впереди и несколько ниже глаз у них два углубления с тонкими мембранами, за которыми лежат воздушные полости. Мембраны усыпаны нервными окончаниями - до 3500 в каждом углублении на поверхности трех-четырех квадратных миллиметров, то есть приблизительно в 100 000 раз больше, чем на такой же поверхности кожи у человека. Эти окончания расположены очень близко к поверхности мембраны, так что змеи на расстоянии полуметра легко чувствуют стакан с водой, температура которой лишь на несколько градусов выше температуры окружающего воздуха. Гремучие змеи даже набрасываются на такие предметы; похоже, что они используют ату чувствительность в поисках теплокровной добычи. Но эти органы не только воспринимают тепловое излучение. То, что они расположены в углублениях и содержат так много нервных окончаний, помогает змее определять направление, по которому поступает тепло. Края ямок экранируют боковое излучение, а положение отбрасываемой тени зависит от направления источника тепла, что позволяет точно наносить удар.

Еще один интересный вопрос: какова острота зрения животных, их способность различать детали? Это свойство присуще далеко не всем; например, у многих червей и моллюсков свет воспринимается "диффузно", всей поверхностью кожи, так, как мы ощущаем тепло. Отличать свет от темноты - единственное, на что они способны. В лучшем случае они в состоянии лишь приблизительно определить направление источника света.


Высшие животные, напротив, приобрели глаза с оптическим аппаратом. Позвоночные пользуются линзой (хрусталиком), которая проецирует изображение на сетчатку, состоящую из миллионов чувствительных клеток, каждая из которых воспринимает лишь малую часть объекта. У насекомых и ракообразных глаза сложные (фасеточные) - они не имеют хрусталика, а состоят из множества конических трубочек, называемых омматидиями, которые расходятся в разные стороны от зрительного нерва, что дает насекомым широкое поле зрения. Каждый омматидий оптически изолирован от соседних слоем пигмента и воспринимает лишь одну точку объекта. Совокупность многих таких точек образует общую мозаичную картину.

Острота зрения у глаза, снабженного линзой, много больше по сравнению с фасеточными глазами. Для пчелы две точки, удаленные друг от друга на расстояние меньше одного углового градуса, будут сливаться в одну, в то время как человек при благоприятных обстоятельствах способен различать точки, удаленные друг от друга всего на 40 угловых секунд, то есть на одну девяностую долю градуса, а у многих птиц зрение, по-видимому, еще острее. Безусловно, такая острота зрения дает много преимуществ: позволяет хищникам с большого расстояния видеть свою жертву (соколы-кобчики, питающиеся насекомыми, различают одиночную стрекозу на расстоянии 800 метров, тогда как мы - лишь с 90 метров), а беззащитным животным - издалека замечать . Хорошее зрение, разумеется, важно и во многих других отношениях. Ниже мы познакомимся со способностью птиц отличать брачных партнеров или птенцов от других особей своего вида; во многих случаях совершенно ясно, что они узнают их "в лицо".

Изучая зрение более глубоко, мы обнаруживаем, что важна не только его острота и способность различать интенсивность света и цветовые оттенки. Как, например, обстоит дело с восприятием движущихся объектов? Здесь животному необходима не только способность различать отдельные элементы изображения, оно должно учитывать и фактор времени. Это значит, что животное способно регистрировать различия между моментами раздражения определенных клеток сетчатки или их групп. Хорошая иллюстрация этому - кино. Мы знаем, что изображения на экране на самом деле не движутся, а представляют последовательную смену неподвижных изображений, каждое из которых попадает на новый участок сетчатки, лежащий рядом с тем, куда лучи света падали в предыдущий раз. Иллюзия движения возникает за счет того, что клетки сетчатки передают информацию о последовательном возбуждении светочувствительных элементов. Непрерывный поток такой информации складывается в картину движения.

Разумеется, для того чтобы это было возможно, между чувствительными клетками должны быть перекрестные связи; такие связи действительно существуют, и в колоссальном количестве. У они обнаруживаются в ганглиях, или в нервных центрах, расположенных сразу за глазом. У высших животных взаимосвязаны не только нервные клетки, лежащие непосредственно за светочувствительными, но и клетки, находящиеся еще глубже в нервной системе.

Но есть еще более сложная и не менее важная задача - определение скорости движения. И действительно, животные могут отличать поступательное, равномерное движение от колебательного или беспорядочного, они по-разному реагируют на предметы, движущиеся с разными скоростями. Однако пока не известно, как нервная система осуществляет этот анализ.

Другая сложная проблема - каким образом происходит различение и узнавание форм. Обучить птицу или реагировать на круг и не обращать внимания на прямоугольник довольно легко - я сам получил массу удовольствия, занимаясь этими исследованиями. Самка роющей осы, которая наполняет свою норку убитыми насекомыми для пропитания личинок, явно обладает способностью различать форму предметов. Вопрос в том, как она ухитряется, возвращаясь с охоты, находить обратную дорогу к норке? Я обнаружил, что эти осы запоминают расположение мелких ориентиров: камешков, шишек, пучков травы около норы. Зная это, я приучил ос узнавать круг из сосновых шишек, выложенный вокруг входа в норку. Однажды, когда оса улетела на охоту, я перенес этот круг сантиметров на 30 в сторону. Вернувшаяся хозяйка тщетно разыскивала свою норку в центре круга, не обращая внимания на находящийся в поле ее зрения настоящий вход. В последующих опытах я предлагал ей на выбор круг из черных камешков и треугольник или овал из шишек. И, хотя я знал из предыдущих опытов, что оса превосходно отличает камешки от шишек, она все же прилетала в круг из камешков - и только потому, что это был круг.

Та же проблема различения форм интенсивно изучается на очень своеобразных животных - осьминогах. Как и у всех головоногих моллюсков, у осьминогов высокоразвитые глаза, во многих отношениях похожие на линзовые глаза позвоночных. Осьминог хорошо различает форму, и его легко научить приплывать за едой, используя в качестве приманки определенные фигуры. Он без труда отличает вертикальный прямоугольник от горизонтального.