Основные методы разложения на множители. Разложение чисел на простые множители, способы и примеры разложения

Очень часто числитель и знаменатель дроби представляют собой алгебраические выражения, которые сначала нужно разложить на множители, а потом, обнаружив среди них одинаковые, разделить на них и числитель, и знаменатель, то есть сократить дробь. Заданиям разложить многочлен на множители посвящена целая глава учебника по алгебре в 7-м классе. Разложение на множители можно осуществить 3 способами , а также комбинацией этих способов.

1. Применение формул сокращенного умножения

Как известно, чтобы умножить многочлен на многочлен , нужно каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена и полученные произведения сложить. Есть, как минимум, 7 (семь) часто встречающихся случаев умножения многочленов, которые вошли в понятие . Например,

Таблица 1. Разложение на множители 1-м способом

2. Вынесение общего множителя за скобку

Этот способ основан на применении распределительного закона умножения. Например,

Каждое слагаемое исходного выражения мы делим на множитель, который выносим, и получаем при этом выражение в скобках (то есть в скобках остаётся результат деления того, что было, на то, что выносим). Прежде всего нужно правильно определить множитель , который надо вынести за скобку.

Общим множителем может быть и многочлен в скобках:

При выполнении задания «разложите на множители» надо быть особенно внимательным со знаками при вынесении общего множителя за скобки. Чтобы поменять знак у каждого слагаемого в скобке (b — a) , вынесем за скобку общий множитель -1 , при этом каждое слагаемое в скобке разделится на -1: (b — a) = — (a — b) .

В том случае если выражение в скобках возводится в квадрат (или в любую чётную степень), то числа внутри скобок можно менять местами совершенно свободно, так как вынесенные за скобки минусы при умножении всё равно превратятся в плюс: (b — a) 2 = (a — b) 2 , (b — a) 4 = (a — b) 4 и так далее…

3. Способ группировки

Иногда общий множитель имеется не у всех слагаемых в выражении, а только у некоторых. Тогда можно попробовать сгруппировать слагаемые в скобки так, чтобы из каждой можно было какой-то множитель вынести. Способ группировки - это двойное вынесение общих множителей за скобки.

4. Использование сразу нескольких способов

Иногда нужно применить не один, а несколько способов разложения многочлена на множители сразу.

Это конспект по теме «Разложение на множители» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

Любой алгебраический многочлен степени n может быть представлен в виде произведения n-линейных множителей вида и постоянного числа, которое является коэффициентов многочлена при старшей ступени х, т.е.

где - являются корнями многочлена.

Корнем многочлена называют число (действительное или комплексное), обращающее многочлен в нуль. Корнями многочлена могут быть как действительные корни, так и комплексно-сопряженные корни, тогда многочлен может быть представлен в следующем виде:

Рассмотрим методы разложения многочленов степени «n» в произведение множителей первой и второй степени.

Способ №1. Метод неопределенных коэффициентов.

Коэффициенты такого преобразованного выражения определяются методом неопределенных коэффициентов. Суть метода сводится к тому, что заранее известен вид множителей, на которые разлагается данный многочлен. При использовании метода неопределённых коэффициентов справедливы следующие утверждения:

П.1. Два многочлена тождественно равны в случае, если равны их коэффициенты при одинаковых степенях х.

П.2. Любой многочлен третьей степени разлагается в произведение линейного и квадратного множителей.

П.3. Любой многочлен четвертой степени разлагается на произведение двух многочленов второй степени.

Пример 1.1. Необходимо разложить на множители кубическое выражение:

П.1. В соответствии с принятыми утверждениями для кубического выражения справедливо тождественное равенство:

П.2. Правая часть выражения может быть представлена в виде слагаемых следующим образом:

П.3. Составляем систему уравнений из условия равенства коэффициентов при соответствующих степенях кубического выражения.

Данная система уравнений может быть решена методом подбора коэффициентов (если простая академическая задача) или использованы методы решения нелинейных систем уравнений. Решая данную систему уравнений, получим, что неопределённые коэффициенты определяются следующим образом:

Таким образом, исходное выражение раскладывается на множители в следующем виде:

Данный метод может использоваться как при аналитических выкладках, так и при компьютерном программировании для автоматизации процесса поиска корня уравнения.

Способ №2. Формулы Виета

Формулы Виета - это формулы, связывающие коэффициенты алгебраических уравнений степени n и его корни. Данные формулы были неявно представлены в работах французского математика Франсуа Виета (1540 - 1603). В связи с тем, что Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем явном виде.

Для любого алгебраического многочлена степени n, который имеет n-действительных корней,

справедливы следующие соотношения, которые связывают корни многочлена с его коэффициентами:

Формулами Виета удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

Пример 2.1. Рассмотрим, как связаны корни многочлена с его коэффициентами на примере кубического уравнения

В соответствии с формулами Виета взаимосвязь корней многочлена с его коэффициентами имеет следующий вид:

Аналогичные соотношения можно составить для любого полинома степени n.

Способ №3. Разложение квадратного уравнения на множители с рациональными корнями

Из последней формулы Виета следует, что корни многочлена являются делителями его свободного члена и старшего коэффициента. В связи с этим, если в условии задачи задан многочлен степени n c целыми коэффициентами

то данный многочлен имеет рациональный корень (несократимая дробь), где p - делитель свободного члена , а q – делитель старшего коэффициента . В таком случае многочлен степени n можно представить в виде (теорема Безу):

Многочлен , степень которого на 1 меньше степени начального многочлена, определяется делением многочлена степени n двучлен , например, с помощью схемы Горнера или самым простым способом - «столбиком».

Пример 3.1. Необходимо разложить многочлен на множители

П.1. В связи с тем, что коэффициент при старшем слагаемом равен единицы, то рациональные корни данного многочлена являются делителями свободного члена выражения, т.е. могут быть целыми числами . Подставляем каждое из представленных чисел в исходное выражение найдем, что корень представленного многочлена равен .

Выполним деление исходного многочлена на двучлен:

Воспользуемся схемой Горнера

В верхней строке выставляются коэффициенты исходного многочлена, при этом первая ячейка верхней строки остается пустой.

В первой ячейке второй строки записывается найденный корень (в рассматриваемом примере записывается число «2»), а следующие значения в ячейках вычисляются определенным образом и они являются коэффициентами многочлена, который получится в результате деления многочлена на двучлен. Неизвестные коэффициенты определяются следующим образом:

Во вторую ячейку второй строки переносится значение из соответствующей ячейки первой строки (в рассматриваемом примере записывается число «1»).

В третью ячейку второй строки записывается значение произведения первой ячейки на вторую ячейку второй строки плюс значение из третьей ячейки первой строки (в рассматриваемом примере 2 ∙1 -5 = -3).

В четвертую ячейку второй строки записывается значение произведения первой ячейки на третью ячейку второй строки плюс значение из четвертой ячейки первой строки (в рассматриваемом примере 2 ∙ (-3) +7 = 1).

Таким образом, исходный многочлен раскладывается на множители:

Способ №4. Использование формул сокращенного умножения

Формулы сокращенного умножения применяют для упрощения вычислений, а также разложение многочленов на множители. Формулы сокращенного умножения позволяют упростить решение отдельных задач.

Формулы, используемые для разложения на множители

В общем случае эта задача предполагает творческий подход, так как не существует универсального метода ее решения. Но все же попробуем дать несколько наводок.

В подавляющем числе случаев, разложение многочлена на множители основано на следствии из теоремы Безу, то есть находится или подбирается корень и понижается степень многочлена на единицу делением на . У полученного многочлена ищется корень и процесс повторяется до полного разложения.

Если же корень найти не удается, то используются специфические способы разложения: от группировки, до ввода дополнительных взаимоисключающих слагаемых.

Дальнейшее изложение базируется на навыках решения уравнений высших степеней с целыми коэффициентами.

Вынесение за скобки общего множителя.

Начнем с простейшего случая, когда свободный член равен нулю, то есть многочлен имеет вид .

Очевидно, что корнем такого многочлена является , то есть многочлен представим в виде .

Этот способ есть ни что иное как вынесение общего множителя за скобки .

Пример.

Разложить многочлен третьей степени на множители.

Решение.

Очевидно, что является корнем многочлена, то есть х можно вынести за скобки:

Найдем корни квадратного трехчлена

Таким образом,

К началу страницы

Разложение на множители многочлена с рациональными корнями.

Сначала рассмотрим способ разложения многочлена с целыми коэффициентами вида , коэффициент при старшей степени равен единице.

В этом случае, если многочлен имеет целые корни, то они являются делителями свободного члена.

Пример.

Решение.

Проверим, имеются ли целые корни. Для этого выписываем делители числа -18 : . То есть, если многочлен имеет целые корни, то они находятся среди выписанных чисел. Последовательно проверим эти числа по схеме Горнера. Ее удобство еще и в том, что в итоге получим и коэффициенты разложения многочлена:

То есть, х=2 и х=-3 являются корнями исходного многочлена и он представим в виде произведения:

Осталось разложить квадратный трехчлен .

Дискриминант этого трехчлена отрицательный, следовательно, он не имеет действительных корней.

Ответ:

Замечание:

вместо схемы Горнера можно было воспользоваться подбором корня и последующим делением многочлена на многочлен.

Теперь рассмотрим разложение многочлена с целыми коэффициентами вида , причем коэффициент при старшей степени не равен единице.

В этом случае многочлен может иметь дробно рациональные корни.

Пример.

Разложить на множители выражение .

Решение.

Выполнив замену переменной y=2x , перейдем к многочлену с коэффициентом равным единице при старшей степени. Для этого сначала домножим выражение на 4 .

Если полученная функция имеет целые корни, то они находятся среди делителей свободного члена. Запишем их:

Вычислим последовательно значения функции g(y) в этих точках до получения нуля.

Разложение на множители уравнения – это процесс нахождения таких членов или выражений, которые, будучи перемноженными, приводят к начальному уравнению. Разложение на множители является полезным навыком для решения основных алгебраических задач, и становится практически необходимым при работе с квадратными уравнениями и другими многочленами. Разложение на множители используется для упрощения алгебраических уравнений, чтобы облегчить их решение. Разложение на множители может помочь вам исключить определенные возможные ответы быстрее, чем вы это сделаете, решая уравнение вручную.

Шаги

Разложение на множители чисел и основных алгебраических выражений

  1. Разложение на множители чисел. Концепция разложения на множители проста, но на практике разложение на множители может оказаться непростой задачей (если дано сложное уравнение). Поэтому для начала рассмотрим концепцию разложения на множители на примере чисел, продолжим с простыми уравнениями, а затем перейдем к сложным уравнениям. Множители данного числа – это числа, которые при перемножении дают исходное число. Например, множителями числа 12 являются числа: 1, 12, 2, 6, 3, 4, так как 1*12=12, 2*6=12, 3*4=12.

    • Аналогично, вы можете рассматривать множители числа как его делители, то есть числа, на которые делится данное число.
    • Найдите все множители числа 60. Мы часто используем число 60 (например, 60 минут в часе, 60 секунд в минуте и т.д.) и у этого числа довольно большое количество множителей.
      • Множители 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60.
  2. Запомните: члены выражения, содержащие коэффициент (число) и переменную, также могут быть разложены на множители. Для этого найдите множители коэффициента при переменной. Зная, как разложить на множители члены уравнений, можно легко упростить данное уравнение.

    • Например, член 12x может быть записан в виде произведения 12 и х. Вы также можете записать 12x как 3(4x), 2(6x) и т.д., разложив число 12 на наиболее подходящие вам множители.
      • Вы можете раскладывать 12x несколько раз подряд. Другими словами, вы не должны останавливаться на 3(4x) или 2(6x); продолжите разложение: 3(2(2x)) или 2(3(2x)) (очевидно, что 3(4x)=3(2(2x)) и т.д.)
  3. Примените распределительное свойство умножения для разложения на множители алгебраических уравнений. Зная, как разложить на множители числа и члены выражения (коэффициенты с переменными), вы можете упростить несложные алгебраические уравнения, найдя общий множитель числа и члена выражения. Обычно для упрощения уравнения необходимо найти наибольший общий делитель (НОД). Такое упрощение возможно благодаря распределительному свойству умножения: для любых чисел а, b, с верно равенство a(b+c) = ab+ac.

    • Пример. Разложите на множители уравнение 12х + 6. Во-первых, найдите НОД 12x и 6. 6 является наибольшим числом, которое делит и 12x, и 6, поэтому вы можете разложить данное уравнение на: 6(2x+1).
    • Этот процесс также верен для уравнений, в которых есть отрицательные и дробные члены. Например, х/2+4 может быть разложено на 1/2(х+8); например, -7x+(-21) может быть разложено на -7(х+3).

    Разложение на множители квадратных уравнений

    1. Убедитесь, что уравнение дано в квадратичной форме (ax 2 + bx + c = 0). Квадратные уравнения имеют вид: ax 2 + bx + c = 0, где а, b, с - числовые коэффициенты отличные от 0. Если вам дано уравнение с одной переменной (х) и в этом уравнении есть один или несколько членов с переменной второго порядка, вы можете перенести все члены уравнения на одну сторону уравнения и приравнять его к нулю.

      • Например, дано уравнение: 5x 2 + 7x - 9 = 4x 2 + x – 18. Оно может быть преобразовано в уравнение x 2 + 6x + 9 = 0, которое является квадратным уравнением.
      • Уравнения с переменной х больших порядков, например, x 3 , x 4 и т.д. не являются квадратными уравнениями. Это кубические уравнения, уравнения четвертого порядка и так далее (только если такие уравнения не могут быть упрощены до квадратных уравнений с переменной х в степени 2).
    2. Квадратные уравнения, где а = 1, раскладываются на (x+d)(x+e), где d*е=с и d+е=b. Если данное вам квадратное уравнение имеет вид: x 2 + bx + c = 0 (то есть коэффициент при x 2 равен 1), то такое уравнение можно (но не гарантированно) разложить на вышеуказанные множители. Для этого нужно найти два числа, которые при перемножении дают «с», а при сложении – «b». Как только вы найдете такие два числа (d и е), подставьте их в следующее выражение: (x+d)(x+e), которое при раскрытии скобок приводит к исходному уравнению.

      • Например, дано квадратное уравнение x 2 + 5x + 6 = 0. 3*2=6 и 3+2=5, поэтому вы можете разложить данное уравнение на (х+3)(х+2).
      • В случае отрицательных членов внесите следующие незначительные изменения в процесс разложения на множители:
        • Если квадратное уравнение имеет вид x 2 -bx+c, то оно раскладывается на: (х-_)(х-_).
        • Если квадратное уравнение имеет вид x 2 -bx-c, то оно раскладывается на: (х+_)(х-_).
      • Примечание: пробелы могут быть заменены на дроби или десятичные числа. Например, уравнение x 2 + (21/2)x + 5 = 0 раскладывается на (х+10)(х+1/2).
    3. Разложение на множители методом проб и ошибок. Несложные квадратные уравнения можно разложить на множители, просто подставляя числа в возможные решения до тех пор, пока вы не найдете правильного решения. Если уравнение имеет вид ax 2 +bx+c, где a>1, возможные решения записываются в виде (dx +/- _)(ex +/- _), где d и е - числовые коэффициенты отличные от нуля, которые при перемножении дают а. Либо d, либо e (или оба коэффициента) могут быть равны 1. Если оба коэффициента равны 1, то воспользуйтесь способом, описанным выше.

      • Например, дано уравнение 3x 2 - 8x + 4. Здесь 3 имеет только два множителя (3 и 1), поэтому возможные решения записываются в виде (3x +/- _)(х +/- _). В этом случае, подставив вместо пробелов -2, вы найдете правильный ответ: -2*3x=-6x и -2*х=-2x; - 6x+(-2x)=-8x и -2*-2=4, то есть такое разложение при раскрытии скобок приведет к членам исходного уравнения.

Приводится 8 примеров разложения многочленов на множители. Они включают в себя примеры с решением квадратных и биквадратных уравнений, примеры с возвратными многочленами и примеры с нахождением целых корней у многочленов третьей и четвертой степени.

1. Примеры с решением квадратного уравнения

Пример 1.1


x 4 + x 3 - 6 x 2 .

Решение

Выносим x 2 за скобки:
.
2 + x - 6 = 0 :
.
Корни уравнения:
, .


.

Ответ

Пример 1.2

Разложить на множители многочлен третьей степени:
x 3 + 6 x 2 + 9 x .

Решение

Выносим x за скобки:
.
Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
Его дискриминант: .
Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
.

Отсюда получаем разложение многочлена на множители:
.

Ответ

Пример 1.3

Разложить на множители многочлен пятой степени:
x 5 - 2 x 4 + 10 x 3 .

Решение

Выносим x 3 за скобки:
.
Решаем квадратное уравнение x 2 - 2 x + 10 = 0 .
Его дискриминант: .
Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
, .

Разложение многочлена на множители имеет вид:
.

Если нас интересует разложение на множители с действительными коэффициентами, то:
.

Ответ

Примеры разложения многочленов на множители с помощью формул

Примеры с биквадратными многочленами

Пример 2.1

Разложить биквадратный многочлен на множители:
x 4 + x 2 - 20 .

Решение

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) .

;
.

Ответ

Пример 2.2

Разложить на множители многочлен, сводящийся к биквадратному:
x 8 + x 4 + 1 .

Решение

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) :

;

;
.

Ответ

Пример 2.3 с возвратным многочленом

Разложить на множители возвратный многочлен:
.

Решение

Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = -1 . Делим многочлен на x - (-1) = x + 1 . В результате получаем:
.
Делаем подстановку:
, ;
;


;
.

Ответ

Примеры разложения многочленов на множители с целыми корнями

Пример 3.1

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

6
-6, -3, -2, -1, 1, 2, 3, 6 .
(-6) 3 - 6·(-6) 2 + 11·(-6) - 6 = -504 ;
(-3) 3 - 6·(-3) 2 + 11·(-3) - 6 = -120 ;
(-2) 3 - 6·(-2) 2 + 11·(-2) - 6 = -60 ;
(-1) 3 - 6·(-1) 2 + 11·(-1) - 6 = -24 ;
1 3 - 6·1 2 + 11·1 - 6 = 0 ;
2 3 - 6·2 2 + 11·2 - 6 = 0 ;
3 3 - 6·3 2 + 11·3 - 6 = 0 ;
6 3 - 6·6 2 + 11·6 - 6 = 60 .

Итак, мы нашли три корня:
x 1 = 1 , x 2 = 2 , x 3 = 3 .
Поскольку исходный многочлен - третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
.

Ответ

Пример 3.2

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
-2, -1, 1, 2 .
Подставляем поочередно эти значения:
(-2) 4 + 2·(-2) 3 + 3·(-2) 3 + 4·(-2) + 2 = 6 ;
(-1) 4 + 2·(-1) 3 + 3·(-1) 3 + 4·(-1) + 2 = 0 ;
1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли еще один корень x 2 = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то разложение многочлена на множители имеет вид.