Открытия, сделанные в большом адронном коллайдере. Адронный коллайдер зачем нужен? Для чего нужен большой адронный коллайдер

Еще несколько лет назад я понятия не имел что такое адронные коллайдеры, Бозон Хиггса и для чего тысячи ученых всего мира трудятся в огромном физическом кампусе на границе Швейцарии и Франции, закапывая в землю миллиарды долларов.
Затем для меня, как и многих других жителей планеты, стали привычными выражение Большой Адронный Коллайдер, знание о сталкивающихся в нем на скорости света элементарных частицах и об одном из величайших открытий последнего времени — Бозоне Хиггса.

И вот, в середине июня мне представилась возможность своими глазами увидеть то, о чем столько говорят и о чем бродит столько противоречивых слухов.
Это была не просто короткая экскурсия, а полноценный день, проведенный в крупнейшей в мире лаборатории ядерной физики — Церне. Здесь нам удалось и пообщаться с самими учеными-физиками, и увидеть массу интересного в этом научном кампусе, спуститься в святая-святых — Большой Адронный Коллайдер (а ведь когда он запущен и в нем проводятся испытания, какой-либо доступ извне к нему невозможен), побывать на заводе по производству гигантских магнитов для коллайдера, в центре Atlas, где ученые проводят анализ данных, полученных в коллайдере, тайком побывать в новейшем строящемся линейном коллайдере и даже, почти как в квесте, практически пройти по тернистому пути элементарной частицы, от конца к началу. И увидеть, откуда же все начинается…
Но обо всем этом в отдельных постах. Сегодня просто Большой Адронный Коллайдер.
Если это можно назвать просто мой мозг отказывается понять, КАК такое можно было сначала придумать, а затем построить.

2. Много лет назад эта картинка стала всемирно известной. Многие считают, что это и есть Большой Адронный в разрезе. На самом деле, это разрез одного из самых больших детекторов — CMS. Его диаметр составляет около 15 метров. Это не самый большой детектор. Диаметр Atlas-а около 22 метров.

3. Чтобы примерно понимать, что это вообще такое и насколько коллайдер большой, посмотрим на спутниковую карту.
Это предместье Женевы, совсем недалеко от Женевского озера. Именно здесь базируется огромный кампус ЦЕРНа, о котором я отдельно расскажу чуть позже, и под землей на различных глубинах располагается куча коллайдеров. Да-да. Он не один. Их десяток. Большой Адронный просто венчает эту структуру, образно говоря, завершая цепочку коллайдеров, по которым разгоняются элементарные частицы. Об этом тоже я расскажу отдельно, пройдя вместе с частицей от Большого (LHC) до самого первого, линейного Linac.
Диаметр кольца LHC составляет почти 27 километров и он залегает на глубине чуть более 100 метров (на рисунке самое большое кольцо).
В LHC есть четыре детектора — Alice, Atlas, LHCb и CMS. Мы спускались к детектору CMS.

4. Помимо этих четырех детекторов, все остальное пространство под землей представляет из себя тоннель, в котором располагается беспрерывная кишка из вот таких синих сегментов. Это магниты. Гигантские магниты, в которых создается сумасшедшее магнитное поле, в котором и двигаются со скоростью света элементарные частицы.
Всего их 1734.

5. Внутри магнит представляет из себя вот такую сложную структуру. Здесь масса всего, но самое основное — это две полые трубки внутри, в которых летают протонные пучки.
В четырех местах (в тех самых детекторах) эти трубки пересекаются и протонные пучки сталкиваются. В тех местах, где они сталкиваются, протоны разлетаются на различные частицы, что и фиксируют детекторы.
Это если вкратце говорить о том, что это за ерунда и как она работает.

6. Итак, 14 июня, утро, ЦЕРН. Мы приезжаем к малозаметному заборчику с воротами и небольшим зданием на территории.
Это вход в один из четырех детекторов Большого Адронного Коллайдера — CMS.
Здесь я хочу немного остановиться, чтобы рассказать о том, как нам вообще удалось сюда попасть и благодаря кому.
А всему «виной» Андрей, наш человек, который работает в ЦЕРНе, и благодаря которому наше посещение было не какой-то короткой скучной экскурсией, а невероятно интересным и наполненным огромным количеством информации.
Андрей (он в зеленой футболке) никогда не против гостей и всегда рад способствовать посещению этой Мекки ядерной физики.
Знаете, что интересно? Это пропускной режим в Коллайдере и в ЦЕРНе вообще.
Да, все по магнитной карте, но… сотрудник по своему пропуску имеет доступ на 95% территории и объектов.
И только те, где повышенный уровень радиационной опасности, нужен специальный доступ — это внутрь самого коллайдера.
А так — без проблем сотрудники передвигаются по территории.
На минуточку — здесь вложены миллиарды долларов и масса самого невероятного оборудования.
И тут же я вспоминаю какие-нибудь заброшенные объекты в Крыму, где все давно нафиг вырезано, но, тем не менее, все мегасекретно, снимать ни в коем случае нельзя, и объект невесть какой стратегический.
Просто здесь люди адекватно думают головой.

7. Так выглядит территория CMS. Никаких тебе понтов во внешней отделке и супер-тачек на парковке. А ведь могут себе позволить. Просто незачем.

8. ЦЕРН, как ведущий мировой научный центр в области физики, использует несколько различных направлений в части пиара. Один из них — так называемое «Tree».
В его рамках приглашаются школьные учителя по физике из разных стран и городов. Им здесь показывают и рассказывают. Затем учителя возвращаются в свои школы и рассказывают об увиденном ученикам. Какое-то количество учеников, вдохновившись рассказом, начинают с большим интересом заниматься физикой, затем идут в ВУЗы на физические специальности и в будущем, возможно, даже попадут сюда работать.
Но пока дети еще учатся в школе, у них тоже есть возможность побывать в ЦЕРНе и, конечно же, спуститься в Большой Адронный Коллайдер.
Несколько раз в месяц здесь проводятся специальные «дни открытых дверей» для одаренных детей из разных стран, влюбленных в физику.
Их отбирают те самые учителя, которые были в основе этого дерева и подают предложения в офис ЦЕРНа в Швейцарии.
Так совпало, что в день, когда мы приехали увидеть Большой Адронный Коллайдер, сюда приехала одна из таких групп из Украины — дети, воспитанники Малой Академии Наук, прошедшие сложный конкурс. Вместе с ними мы спустились на 100-метровую глубину, в самое сердце Коллайдера.

9. Слава с нашими бейджами-пропусками.
Обязательные элементы работающих здесь физиков — шлем с фонарем и ботинки с металлической пластиной на носке (чтобы при падении груза уберечь пальцы ног)

10. Одаренные дети, увлеченные физикой. Через несколько минут сбудется их места — они спустятся в Большой Адронный Коллайдер

11. Рабочие играют в домино отдыхают перед очередной сменой под землей

12. Контрольно-управляющий центр CMS. Сюда стекаются первичные данные от основных датчиков, характеризующих функционирование системы.
Во время работы коллайдера, здесь круглосуточно работает команда из 8 человек.

13. Нужно сказать, что в настоящий момент Большой Адронный остановлен на два года для выполнения программы ремонта и модернизации коллайдера.
Дело в том, что 4 года назад на нем произошла авария, после которой коллайдер так и не работал на полную мощность (об аварии я расскажу в следующем посте).
После модернизации, которая закончится в 2014 году, он должен работать на еще большей мощности.
Если бы коллайдер сейчас работал, побывать в нем нам бы точно не удалось

14. На специальном техническом лифте мы спускаемся на глубину более 100 метров, где расположен Коллайдер.
Лифт является единственным средством спасения персонала в случае чрезвычайной ситуации, т.к. лестниц здесь нет. То есть это самое безопасное место в CMS.
По инструкции, в случае тревоги, весь персонал должен немедленно направляться к лифту.
Здесь создается избыточной давление, чтобы в случае задымления дым не попал внутрь и люди не получили отравление.

15. Борис переживает, чтобы не было задымления

16. На глубине. Здесь все пронизано коммуникациями

17. Бесконечные километры проводов и кабелей для передачи данных

18. Здесь огромное количество труб. Так называемая криогеника. Дело в том, что внутри магнитов для охлаждения используется гелий. Также необходимо охлаждение других систем, а также гидравлика.

19. В залах обработки данных, расположенных в детекторе расположен находится огромное число серверов.
Они объединены в так называемые триггеры невероятной производительности.
Например, первый триггер за 3 миллисекунды из 40 000 000 событий должен отобрать около 400 и передать их на второй триггер — высшего уровня.

20. Оптоволоконное безумие.
Компьютерные залы расположены выше детектора, т.к. здесь совсем небольшое магнитное поле, не препятствующие работе электроники.
В самом детекторе сбор данных осуществлять бы не удалось.

21. Глобальный триггер. Он состоит из 200 компьютеров

22. Какой там Apple? Dell !!!

23. Серверные шкафы надежно заперты

24. Забавный рисунок на одном из рабочих мест операторов.

25. В конце 2012 года в Большом Адронном Коллайдере в результате эксперимента таки был открыт Бозон Хиггса, и это событие широко отмечалось работниками ЦЕРНа.
Бутылки от шампанского после празднования не выбросили специально, считая, что это только начало великих дел

26. На подходе к самому детектору везде таблички, предупреждающие о радиационной опасности

26. У всех сотрудников Коллайдера есть персональные дозиметры, которые они обязаны поднести к считывающему устройству и зафиксировать свое нахождение.
Дозиметр накапливает уровень радиации и в случае приближения к граничной дозе, информирует сотрудника, а также он-лайн передает данные на пост управления, предупреждая о том, что около коллайдера находится человек, который в опасности

27. Перед самым детектором система доступа высшего уровня.
Войти можно, приложим персональную карту, дозиметр и пройдя сканирование сетчатки глаза

28. Что я и делаю

29. И вот он — детектор. Небольшое жало внутри — это что-то похожее на патрон для дрели, в котором расположены те огромные магниты, которые сейчас казались бы совсем маленькими. В настоящий момент магниты отсутствуют, т.к. проходит модернизация

30. В рабочем состоянии детектор соединен и выглядит единым целым

31. Вес детектора — 15 тысяч тонн. Здесь создается невероятное по силе магнитное поле.

32. Сравните размеры детектора с людьми и техникой, работающими внизу

33. Кабеля синего цвета — питание, красные — данные

34. Интересно, что во время работы Большой Адронный потребляет в час 180 мегаватт электроэнергии.

35. Текущие работы по обслуживанию датчиков

36. Многочисленные датчики

37. И питание к ним… обратно возвращается оптоволокно

38. Взгляд невероятно умного человека.

39. Полтора часа под землей пролетает, как пять минут… Поднявшись обратно на бренную землю, невольно задумываешься… КАК это можно сделать.
И ЗАЧЕМ они это делают….

Пожалуй, всему миру известно грандиознейшее научное сооружение Европы – Большой адронный коллайдер, который выстроен неподалёку от швейцарского города Женева.

Перед его запуском было немало панических слухов о грядущем конце света и о том, что установка нанесёт непоправимый вред экологии Швейцарии. Однако годы идут, коллайдер работает, а мир остаётся прежним. Для чего же построили столь огромную и дорогостоящую конструкцию? Давайте разберёмся.

Что такое Большой адронный коллайдер?

В конструкции Большого адронного коллайдера, или БАК, нет ничего мистического. Это всего лишь ускоритель заряженных элементарных частиц, который необходим для разгона тяжёлых частиц и изучения продуктов, образующихся при их столкновении с другими частицами.

Во всём мире существует больше десятка аналогичных установок, в их числе – российские ускорители в подмосковной Дубне и в Новосибирске. БАК был впервые запущен в 2008 году, но из-за случившейся вскоре аварии долгое время работал на невысокой энергетической мощности, и лишь с 2015 года стала возможной эксплуатация установки на расчётных мощностях.

Как и практически все подобные установки, БАК представляет собой тоннель, проложенный в виде кольца. Он находится на глубине примерно 100 метров на границе между Францией и Швейцарией. Строго говоря, в систему БАК входит две установки, одна меньшего, другая большего диаметра. Длина большого тоннеля превосходит размеры всех прочих существующих сегодня ускорителей и составляет 25,5 километров, из-за чего коллайдер получил название Большого.

Для чего построен коллайдер?

Современным физикам удалось разработать теоретическую модель , объединяющую три фундаментальных взаимодействия из четырёх существующих и названную Стандартной моделью (СМ). Однако она пока не может считаться всеобъемлющей теорией строения мира, поскольку практически неисследованной остаётся область, названная учёными теорией квантовой гравитации и описывающая гравитационное взаимодействие. Ведущую роль в нём, согласно теории, должен играть механизм образования массы частиц, названный бозоном Хиггса.


Учёные всего мира надеются, что исследования, проводимые на БАК, позволят изучить свойства бозона Хиггса экспериментальным путём. Кроме того, немалый интерес представляет изучение кварков – так называются элементарные частицы, образующие адроны (из-за них коллайдер назван адронным).

Как функционирует БАК?

Как уже сказано, БАК представляет собой круглый тоннель, состоящий из основного и вспомогательного колец. Стенки тоннеля сложены из множества мощнейших электромагнитов, которые генерируют поле, ускоряющее микрочастицы. Начальный разгон происходит во вспомогательном тоннеле, но необходимую скорость частицы набирают в основном кольце, после чего несущиеся навстречу частицы сталкиваются, а результат их столкновения фиксируют высокочувствительные приборы.

В результате многочисленных экспериментов в июле 2012 года руководство ЦЕРН (Европейского совета ядерных исследований) объявило о том, что эксперименты позволили обнаружить бозон Хиггса. В настоящее время продолжается изучение этого явления, так как многие его свойства отличаются от предсказанных в теории.

Для чего людям нужен БАК?

Затраты на строительство БАК составили, по разным сведениям, свыше 6 млрд долларов США. Сумма становится намного более внушительной, если вспомнить ежегодные расходы на эксплуатацию установки. Для чего нужно нести столь существенные расходы, какую пользу принесёт коллайдер обычным людям?

Исследования, запланированные и уже происходящие на БАК, в перспективе могут открыть людям доступ к дешёвой энергии, которую можно будет получать буквально из воздуха. Это будет, возможно, наиболее грандиозная научно-техническая революция в истории человечества. Кроме того, разобравшись в механизме бозона Хиггса, люди, возможно, получат власть над силой, которая пока остаётся полностью неподконтрольной людям – над гравитацией.


Безусловно, открытия, которые будут сделаны при помощи Большого адронного коллайдера, не позволят нам прямо завтра овладеть технологией преобразования вещества в энергию или создать антигравитационный летательный аппаратпрактические результаты ожидаются лишь в отдалённом будущем. Однако эксперименты позволят сделать ещё несколько небольших шагов к пониманию сути строения Вселенной.

Многие простые жители планеты задают себе вопрос о том, для чего нужен большой адронный коллайдер. Непонятные большинству научные исследования, на которые потрачено много миллиардов евро, вызывают настороженность и опаску.

Может, это и не исследования вовсе, а прототип машины времени или портал для телепортации инопланетных существ, способной изменить судьбу человечества? Слухи ходят самые фантастичные и страшные. В статье мы попытаемся разобраться, что такое адронный коллайдер и для чего он создавался.

Амбициозный проект человечества

Большой адронный коллайдер на сегодня является мощнейшим на планете ускорителем частиц. Он находится на границе Швейцарии и Франции. Точнее под нею: на глубине 100 метров залегает кольцевой тоннель ускорителя длиной почти 27 километров. Хозяином экспериментального полигона стоимостью, превышающей 10 миллиардов долларов, является Европейский центр ядерных исследований.

Огромное количество ресурсов и тысячи физиков-ядерщиков занимаются тем, что ускоряют протоны и тяжёлые ионы свинца до скорости, близкой к световой, в разных направлениях, после чего сталкивают их друг с другом. Результаты прямых взаимодействий тщательно изучаются.

Предложение создать новый ускоритель частиц поступило ещё в 1984 году. Десять лет велись различные дискуссии насчет того, что будет собой представлять адронный коллайдер, зачем нужен именно такой масштабный исследовательский проект. Только после обсуждения вопросов особенностей технического решения и требуемых параметров установки проект был утверждён. Строительство начали только в 2001 году, выделив для его размещения прежнего ускорителя элементарных частиц - большого электрон-позитронного коллайдера.

Зачем нужен большой адронный коллайдер

Взаимодействие элементарных частиц описывается по-разному. Теория относительности вступает в противоречия с квантовой теорией поля. Недостающим звеном в обретении единого подхода к строению элементарных частиц является невозможность создания теории квантовой гравитации. Вот зачем нужен адронный коллайдер повышенной мощности.

Общая энергия при столкновении частиц составляет 14 тераэлектронвольт, что делает устройство значительно более мощным ускорителем, чем все существующие сегодня в мире. Проведя эксперименты, ранее невозможные по техническим причинам, учёные с большой долей вероятности смогут документально подтвердить или опровергнуть существующие теории микромира.

Изучение кварк-глюонной плазмы, образующейся при столкновении ядер свинца, позволит построить более совершенную теорию сильных взаимодействий, которая сможет кардинально изменить ядерную физику и звёздного пространства.

Бозон Хиггса

В далёком 1960 году физик из Шотландии Питер Хиггс разработал теорию поля Хиггса, согласно которой частицы, попадающие в это поле, подвергаются квантовому воздействию, что в физическом мире можно наблюдать как массу объекта.

Если в ходе экспериментов удастся подтвердить теорию шотландского ядерного физика и найти бозон (квант) Хиггса, то это событие может стать новой отправной точкой для развития жителей Земли.

А открывшиеся управляющего гравитацией, многократно превысят все видимые перспективы развития технического прогресса. Тем более что передовых учёных больше интересует не само наличие бозона Хиггса, а процесс нарушения электрослабой симметрии.

Как он работает

Чтобы экспериментальные частицы достигли немыслимой для поверхности скорости, почти равной в вакууме, их разгоняют постепенно, каждый раз увеличивая энергию.

Сначала линейные ускорители делают инжекцию ионов и протонов свинца, которые после подвергают ступенчатому ускорению. Частицы через бустер попадают в протонный синхротрон, где получают заряд в 28 ГэВ.

На следующем этапе частицы попадают в супер-синхротрон, где энергия их заряда доводится до 450 ГэВ. Достигнув таких показателей, частицы попадают в главное многокилометровое кольцо, где в специально расположенных местах столкновения детекторы подробно фиксируют момент соударения.

Кроме детекторов, способных зафиксировать все процессы при столкновении, для удержания протонных сгустков в ускорителе используют 1625 магнитов, обладающих сверхпроводимостью. Общая их длина превышает 22 километра. Специальная для достижения поддерживает температуру −271 °C. Стоимость каждого такого магнита оценивается в один миллион евро.

Цель оправдывает средства

Для проведения таких амбициозных экспериментов и был построен самый мощный адронный коллайдер. Зачем нужен многомиллиардный научный проект, человечеству рассказывают с нескрываемым восторгом многие учёные. Правда, в случае новых научных открытий, скорее всего, они будут надёжно засекречены.

Даже можно сказать, наверняка. Подтверждением сему является вся история цивилизации. Когда придумали колесо, появились Освоило человечество металлургию - здравствуйте, пушки и ружья!

Все самые современные разработки сегодня становятся достоянием военно-промышленных комплексов развитых стран, но никак не всего человечества. Когда учёные научились расщеплять атом, что появилось первым? Атомные реакторы, дающие электроэнергию, правда, после сотен тысяч смертей в Японии. Жители Хиросимы однозначно были против научного прогресса, который забрал у них и их детей завтрашний день.

Техническое развитие выглядит насмешкой над людьми, потому что человек в нём скоро превратится в самое слабое звено. По теории эволюции, система развивается и крепнет, избавляясь от слабых мест. Может получиться в скором времени так, что нам не останется места в мире совершенствующейся техники. Поэтому вопрос "зачем нужен большой адронный коллайдер именно сейчас" на самом деле - не праздное любопытство, ибо вызван опасением за судьбу всего человечества.

Вопросы, на которые не отвечают

Зачем нам большой адронный коллайдер, если на планете миллионы умирают от голода и неизлечимых, а порой и поддающихся лечению болезней? Разве он поможет побороть это зло? Зачем нужен адронный коллайдер человечеству, которое при всём развитии техники вот уже как сто лет не может научиться успешно бороться с раковыми заболеваниями? А может, просто выгоднее оказывать дорогие медуслуги, чем найти способ исцелить? При существующем миропорядке и этическом развитии лишь горстке представителей человеческой расы весьма необходим большой адронный коллайдер. Зачем он нужен всему населению планеты, ведущему безостановочный бой за право жить в мире, свободном от посягательств на чью-либо жизнь и здоровье? История об этом умалчивает...

Опасения научных коллег

Есть другие представители научной среды, высказывающие серьёзные опасения по поводу безопасности проекта. Велика вероятность того, что научный мир в своих экспериментах, в силу своей ограниченности в знаниях, может утратить контроль над процессами, которые даже толком не изучены.

Такой подход напоминает лабораторные опыты юных химиков - всё смешать и посмотреть, что будет. Последний пример может закончиться взрывом в лаборатории. А если такой «успех» постигнет адронный коллайдер?

Зачем нужен неоправданный риск землянам, тем более что экспериментаторы не могут с полной уверенностью сказать, что процессы столкновений частиц, приводящие к образованию температур, превышающих в 100 тысяч раз температуру нашего светила, не вызовут цепной реакции всего вещества планеты?! Или просто вызовут способную фатально испортить отдых в горах Швейцарии или во французской Ривьере...

Информационная диктатура

Для чего нужен большой адронный коллайдер, когда человечество не может решить менее сложные задачи? Попытка замалчивания альтернативного мнения только подтверждает возможность непредсказуемости хода событий.

Наверное, там, где впервые появился человек, в него и была заложена эта двойственная особенность - делать благо и вредить себе одновременно. Быть может, нам ответ дадут открытия, которые подарит адронный коллайдер? Зачем нужен был этот рискованный эксперимент, будут решать уже наши потомки.

Наверняка почти каждый человек на Земле, хоть раз, да слышал о большом адронном коллайдере. Вот только, несмотря на то, что многие слышали о нем, мало кто понимает, что такое адронный колладейр, каково его предназначение, в чем суть адронного коллайдера. В нашей сегодняшней статье мы ответим на эти вопросы.

Что такое адронный коллайдер

По сути адронный коллайдер представляет собой сложный ускоритель элементарных частиц. С его помощью физикам удается разогнать протоны и тяжелые ионы. Изначально адронный коллайдер создавался для подтверждения существования , неуловимой элементарной частицы, которую физики порой в шутку называют «частичкой Бога». И да, существование этой частички было подтверждено экспериментально с помощью коллайдера, а сам ее первооткрыватель Питер Хиггс получил за это нобелевскую премию по физике в 2013 году.

Разумеется, одним лишь бозоном Хиггса дело не ограничилось, помимо него физиками были найдены и некоторые другие элементарные частицы. Теперь вы знаете ответ на вопрос, зачем нужен адронный коллайдер.

Что представляет собой большой адронный коллайдер

Прежде всего, необходимо заметить, что большой адронный колайдер не возник на пустом месте, а появился как эволюция своего предшественника – большого электрон-позитронного коллайдера, представляющего собой 27-ми километровый подземный туннель, строительство которого началось еще в 1983 году. В 1988 году кольцевой тоннель сомкнулся, притом интересно то, что строители подошли к делу очень тщательно, настолько, что расхождение между двумя концами туннеля составляет лишь 1 сантиметр.

Так выглядит схема адронного коллайдера.

Электрон-позитронный коллайдер проработал до 2000 года и за время его работы в физике был сделан с его помощью целый ряд открытий, среди которых открытие W и Z бозонов и их дальнейшее исследование.

С 2001 года на месте электрон-позитронного коллайдера началось уже строительство коллайдера адронного, которое закончилось в 2007 году.

Где находится адронный коллайдер

Большой адронный коллайдер находится на границе Швейцарии и Франции, в долине женевского озера, всего лишь в 15 км от самой Женевы. И располагается он на глубине 100 метров.

Место расположения адронного коллайдера.

В 2008 году начались его первые испытания под патронатом ЦЕРН – Европейской организации по ядерным исследованиям, которая на данный момент является крупнейшей лабораторией в мире в области физики высоких энергий.

Для чего нужен адронный коллайдер

С помощью этого гигантского ускорителя элементарных частиц физики могут проникать так глубоко внутрь материи, как никогда раньше. Все это помогает, как подтверждать старые научные гипотезы, так и создавать новые интересные теории. Детальное изучение физики элементарных частиц помогает нам приблизиться в поисках ответов на вопросы об устройстве Вселенной, о том, как она зародилась.

Глубокое погружение в микромир позволяет открыть революционно новые пространственно-временные теории, и как знать, может быть, даже удастся проникнуть в тайну времени, этого четвертого измерения нашего мира.

Как работает адронный коллайдер

Теперь давайте опишем, как собственно работает большой адронный коллайдер. О принципах его работы говорит название, так как само слово «коллайдер» с английского переводится как «тот, кто сталкивает». Главная его задача – устроить столкновение элементарных частиц. Причем частицы в коллайдере летают (и сталкиваются) на скоростях, близких к скоростям света. Результаты столкновений частиц фиксируют четыре основных больших детектора: ATLAS, CMS, ALICE и LHCb и множество вспомогательных детекторов.

Более детально принцип работы адронного коллайдера описан в этом интересно видео.

Опасность адронного коллайдера

В целом людям свойственно боятся вещей, которые они не понимают. Именно это иллюстрирует отношение к адроному коллайдеру и различные опасения, с ним связанные. Самые радикальные из них, высказывались, что в случае возможного взрыва адронного коллайдера может погибнуть, не много, не мало, а все человечество вместе с планетой Землей, которую поглотит образовавшаяся после взрыва . Разумеется, первые же опыты показали, что подобные опасения не более чем детская страшилка.

А вот некоторые серьезные опасения относительно работы коллайдера были высказаны недавно умершим английским ученым Стивеном Хокингом. Причем опасения Хокинга связаны не столько с самим коллайдером, сколько с полученным с его помощью бозоном Хиггса. По мнению ученого этот бозон является крайне не стабильным материалом и в результате определенного стечения обстоятельств может привести к распаду вакуума и полному исчезновению таких понятий как пространство и время. Но не все так страшно, так согласно Хокингу, для того, чтобы произошло нечто подобное необходим коллайдер величиной с целую планету.

Самый мощный в мире ускоритель заряженных частиц на встречных пучках

Самый мощный в мире ускоритель заряженных частиц на встречных пучках, построенный Европейским центром по ядерным исследованиям (CERN) в подземном тоннеле протяженностью 27 километров на глубине 50-175 метров на границе Швейцарии и Франции. БАК был запущен осенью 2008 года, однако из-за аварии эксперименты на нем начались только в ноябре 2009 года, а на проектную мощность он вышел в марте 2010 года. Запуск коллайдера привлек внимание не только физиков, но и простых обывателей, поскольку в СМИ высказывались опасения по поводу того, что эксперименты на коллайдере могут привести к концу света. В июле 2012 года было объявлено об обнаружении при помощи БАК частицы, которая с высокой вероятностью представляла собой бозон Хиггса - его существование подтверждало правильность Стандартной модели строения вещества.

Предыстория

Впервые ускорители частиц стали использоваться в науке в конце 20-х годов XX века для исследования свойств материи. Первый кольцевой ускоритель, циклотрон, был создан в 1931 году американским физиком Эрнестом Лоуренсом (Ernest Lawrence). В 1932 году англичанин Джон Кокрофт (John Cockcroft) и ирландец Эрнест Уолтон (Ernest Walton) при помощи умножителя напряжения и первого в мире ускорителя протонов сумели впервые осуществить искусственное расщепление ядра атома: при бомбардировке лития протонами был получен гелий. Ускорители частиц работают за счет электрических полей, которые используются для ускорения (во многих случаях до скоростей, приближенных к скорости света) и удержания на заданной траектории заряженных частиц (например, электронов, протонов или более тяжелых ионов). Простейший бытовой пример ускорителей - это телевизоры с электронной лучевой трубкой , , , , .

Ускорители используются для разнообразных экспериментов, в том числе для получения сверхтяжелых элементов . Для исследования элементарных частиц также используются коллайдеры (от collide - "столкновение") - ускорители заряженных частиц на встречных пучках, предназначенные для изучения продуктов их соударений. Ученые придают пучкам большие кинетические энергии. При столкновениях могут образоваться новые, ранее неизвестные частицы. Специальные детекторы призваны уловить их появление . На начало 1990-х годов наиболее мощные коллайдеры действовали в США и Швейцарии . В 1987 году в США недалеко от Чикаго был запущен коллайдер Тэватрон (Tevatron) с максимальной энергией пучка 980 гигаэлектронвольт (ГэВ). Он представляет собой подземное кольцо длиной 6,3 километра , , . В 1989 году в Швейцарии под эгидой Европейского центра по ядерным исследованиям (CERN) был введен в эксплуатацию Большой электрон-позитронный коллайдер (LEP). Для него на глубине 50-175 метров в долине Женевского озера был построен кольцевой тоннель длинной 26,7 километра, в 2000 году на нем удалось добиться энергии пучка в 209 ГэВ , , , .

В СССР в 1980-е годы был создан проект Ускорительно-накопительного комплекса (УНК) - сверхпроводящего протон-протонного коллайдера в Институте физики высоких энергий (ИФВЭ) в Протвино. Он превосходил бы по большинству параметров LEP и Тэватрон и должен был позволить разгонять пучки элементарных частиц с энергией 3 тераэлектронвольта (ТэВ). Его основное кольцо длиной 21 километр был построено под землей в 1994 году, однако из-за нехватки средств проект в 1998 году был заморожен, построенный в Протвино тоннель - законсервирован (были достроены только элементы разгонного комплекса), а главный инженер проекта Геннадий Дуров уехал на работу в США , , , , , , , . По мнению некоторых российских ученых, если бы УНК был достроен и введен в строй, не было бы необходимости в создании более мощных коллайдеров , , : высказывалось предположение, что для получения новых данных о физических основах мироустройства достаточно было преодолеть на ускорителях порог энергии в 1 ТэВ , . Заместитель директора НИИ ядерной физики МГУ и координатор участия российских институтов в проекте создания Большого адронного коллайдера Виктор Саврин, вспоминая об УНК, утверждал: "Ну три тераэлектронвольта или семь. А там три тераэлектронвольта можно было довести до пяти потом" . Впрочем, США тоже отказались от строительства собственного Сверхпроводимого суперколлайдера (SSC) в 1993 году, причем по финансовым соображениям , , .

Вместо строительства собственных коллайдеров физики разных стран решили объединиться в рамках международного проекта, идея создания которого зародилась еще в 1980-х годах , . После окончания экспериментов на швейцарском LEP его оборудование было демонтировано, и на его месте начато строительство Большого адронного коллайдера (БАК, Large Hadron Collider, LHC) - самого мощного в мире кольцевого ускорителя заряженных частиц на встречных пучках, на котором будут сталкиваться пучки протонов с энергиями столкновения до 14 ТэВ и ионы свинца с энергиями столкновения до 1150 ТэВ , , , , , .

Цели эксперимента

Основной целью строительства БАК было уточнение или опровержение Стандартной модели - теоретической конструкции в физике, описывающей элементарные частицы и три из четырех фундаментальных взаимодействия: сильное, слабое и электромагнитное, за исключением гравитационного , . Формирование Стандартной модели было завершено в 1960-1970-х годах, и все сделанные с тех пор открытия, по мнению ученых, описывались естественными расширениями этой теории , . При этом Стандартная модель объясняла, каким образом взаимодействуют элементарные частицы, но не отвечала на вопрос, почему именно так, а не иначе .

Ученые отмечали, что если бы на БАК не удалось добиться открытия бозона Хиггса (в прессе его иногда называли "частицей бога" , , ) - это поставило бы под вопрос всю Стандартную модель, что потребовало бы полного пересмотра существующих представлений об элементарных частицах , , , , . В то же время в случае подтверждения Стандартной модели некоторые области физики требовали дальнейшей экспериментальной проверки: в частности, нужно было доказать существование "гравитонов" - гипотетических частиц, отвечавших за гравитацию , , .

Технические особенности

БАК располагается в тоннеле, построенном для LEP. Большая его часть лежит под территорией Франции . Тоннель содержит две трубы, которые почти на всей своей протяженности идут параллельно и пересекаются в местах расположения детекторов, в которых будут осуществляться столкновения адронов - частиц, состоящих из кварков (для столкновений будут использоваться ионы свинца и протоны). Разгоняться протоны начинают не в самом БАК, а во вспомогательных ускорителях. Пучки протонов "стартуют" в линейном ускорителе LINAC2, затем в ускорителе PS, после чего они попадают в кольцо супер протонного синхротрона (SPS) длинной 6,9 километра и уже после этого оказываются в одной из труб БАК, где еще в течение 20 минут им будет придана энергия до 7 ТэВ. Эксперименты с ионами свинца будут начинаться в линейном ускорителе LINAC3. Пучки удерживаются на траектории 1600 сверхпроводящими магнитами, многие из которых весят до 27 тонн. Эти магниты охлаждаются жидким гелием до сверхнизкой температуры: 1,9 градуса выше абсолютного нуля, холоднее открытого космоса , , , , , , , .

На скорости в 99,9999991 процента скорости света, совершая более 11 тысяч кругов по кольцу коллайдера в секунду, протоны будут сталкиваться в одном из четырех детекторов - наиболее сложных систем БАК , , , , , . Детектор ATLAS предназначен для поиска новых неизвестных частиц, которые могут подсказать ученым пути поиска "новой физики", отличной от Стандартной модели. Детектор CMS предназначен для получения бозона Хиггса и исследования темной материи. Детектор ALICE предназначен для исследований материи после Большого Взрыва и поиска кварк-глюонной плазмы, а детектор LHCb будет исследовать причину превалирования материи над антиматерией и исследовать физику b-кварков , . В будущем планируется ввести в строй еще три детектора: TOTEM, LHCf и MoEDAL , .

Для обработки результатов экспериментов на БАК будет использоваться выделенная распределенная компьютерная сеть GRID, способная передавать до 10 гигабит информации в секунду в 11 вычислительных центров по всему миру. Каждый год с детекторов будет считываться более 15 петабайт (15 тысяч терабайт) информации: суммарный поток данных четырех экспериментов может достигать 700 мегабайт в секунду , , , , . В сентябре 2008 года хакерам удалось взломать веб-страницу CERN и, по их заявлениям, получить доступ к управлению коллайдером. Однако сотрудники CERN объяснили, что система управления БАК изолирована от интернета . В октябре 2009 года по подозрению в сотрудничестве с террористами был арестован Адлен Ишор , который был одним из ученых работавших над экспериментом LHCb на БАК. Впрочем, как сообщило руководство CERN, Ишор не имел доступа к подземным помещениям коллайдера и не занимался ничем, что могло было заинтересовать террористов , . В мае 2012 года Ишор был осужден на пять лет тюрьмы .

Стоимость и история строительства

В 1995 году стоимость создания БАК оценивалась в 2,6 миллиарда швейцарских франков без учета стоимости проведения экспериментов . Планировалось, что эксперименты должны будут начаться через 10 лет - в 2005 году . В 2001 году бюджет CERN был сокращен, а к стоимости строительства было добавлено 480 миллионов франков (общая стоимость проекта к тому времени составляла около 3 миллиардов франков), и это привело к тому, что пуск коллайдера был отложен до 2007 года . В 2005 году при строительстве БАК погиб инженер: причиной трагедии стало падение груза с крана .

Запуск БАК переносился не только из-за проблем с финансированием. В 2007 году выяснилось, что поставленные Fermilab детали для сверхпроводящих магнитов не удовлетворяли конструкционным требованиям, из-за чего запуск коллайдера был перенесен на год .

10 сентября 2008 года в БАК был запущен первый пучок протонов . Планировалось, что через несколько месяцев на коллайдере будут осуществлены первые столкновения , однако 19 сентября из-за дефектного соединения двух сверхпроводящих магнитов на БАК произошла авария: магниты были выведены из строя, в тоннель вылилось более 6 тонн жидкого гелия, в трубах ускорителя был нарушен вакуум. Коллайдер пришлось закрыть на ремонт. Несмотря на аварию 21 сентября 2008 года состоялась торжественная церемония введения БАК в строй. Первоначально опыты собирались возобновить уже в декабре 2008 года, однако затем дата повторного запуска была перенесена на сентябрь, а после - на середину ноября 2009 года, при этом первые столкновения планировалось провести лишь в 2010 году , , , . Первые после аварии тестовые запуски пучков ионов свинца и протонов по части кольца БАК были произведены 23 октября 2009 года , . 23 ноября в детекторе ATLAS были произведены первые столкновения пучков , а 31 марта 2010 года коллайдер заработал на полную мощность: в тот день было зарегистрировано столкновение пучков протонов на рекордной энергии в 7 ТэВ . В апреле 2012 года была зафиксирована еще большая энергия столкновений протонов - 8 ТэВ .

В 2009 году стоимость БАК оценивалась от 3,2 до 6,4 миллиарда евро, что делало его самым дорогим научным экспериментом в истории человечества .

Международное сотрудничество

Отмечалось, что проект масштаба БАК не под силу создать одной стране . Он создавался усилиями не только 20 государств-участников CERN: в его разработке принимали участие более 10 тысяч ученых из более чем ста стран земного шара , , . С 2009 года проектом БАК руководит генеральный директор CERN Рольф-Дитер Хойер (Rolf-Dieter Heuer) . В создании БАК принимает участие и Россия как член-наблюдатель CERN : в 2008 году на Большом адронном коллайдере работало около 700 российских ученых, в их числе были сотрудники ИФВЭ , .

Между тем, ученые одной из европейских стран едва не лишились возможности принять участие в экспериментах на БАК. В мае 2009 года министр науки Австрии Йоханнес Хан (Johannes Hahn) заявил о выходе страны из CERN с 2010 года, объяснив это тем, что членство в CERN и участие в программе создания БАК слишком затратно и не приносит ощутимой отдачи науке и университетам Австрии. Речь шла о возможной ежегодной экономии примерно 20 миллионов евро, составлявших 2,2 процента бюджета CERN и около 70 процентов средств, выделяемых на австрийским правительством на участие в международных исследовательских организациях. Окончательное решение о выходе Австрия пообещала принять осенью 2009 года . Впрочем, впоследствии австрийский канцлер Вернер Файман (Werner Faymann) заявил, что его страна не собирается уходить из проекта и CERN .

Слухи об опасности

В прессе циркулировали слухи о том, что БАК представляет опасность для человечества, поскольку его запуск может привести к концу света. Поводом стали заявления ученых о том, что в результате столкновений в коллайдере могут образоваться микроскопические черные дыры: сразу появились мнения о том, что в них может "засосать" всю Землю, и потому БАК является настоящим "ящиком Пандоры" , , , , . Также высказывались мнения о том, что обнаружение бозона Хиггса приведет к бесконтрольному росту массы во Вселенной, а эксперименты по поиску "темной материи" могут привести к появлению "страпелек" (strangelets, перевод термина на русский язык принадлежит астроному Сергею Попову ) - "странной материи", которая при соприкосновении с обычной материей может превратить ее в "страпельку". При этом приводилось сравнение с романом Курта Воннегута (Kurt Vonnegut) "Колыбель для кошки", где вымышленный материал "лед-девять" уничтожил жизнь на планете , . Некоторые издания, ссылаясь на мнения отдельных ученых, заявляли также о том, что эксперименты на БАК могут привести к появлениям "чревоточин" (wormholes) во времени, через которые в наш мир из будущего могут перенестись частицы или даже живые существа , . Впрочем, оказалось, что слова ученых были искажены и неверно интерпретированы журналистами: изначально речь шла "о микроскопических машинах времени, при помощи которых путешествовать в прошлое смогут только отдельные элементарные частицы" , .

Ученые неоднократно заявляли о том, что вероятность подобных событий ничтожно мала. Была даже собрана специальная Группа оценки безопасности БАК, которая провела анализ и выступила с отчетом о вероятности катастроф, к которым могут привести эксперименты на БАК. Как сообщили ученые, столкновения протонов на БАК будут не опаснее, чем столкновения космических лучей со скафандрами космонавтов: они имеют иногда даже большую энергию, чем та, что может быть достигнута в БАК. А что касается гипотетических черных дыр, то они "рассосутся", не долетев даже до стенок коллайдера , , , , , .

Впрочем, слухи о возможных катастрофах все равно держали общественность в напряжении. На создателей коллайдера даже подавали в суд: самые известные иски принадлежали американскому юристу и врачу Вальтеру Вагнеру (Walter Wagner) и профессору химии из Германии Отто Ресслеру (Otto Rossler). Они обвиняли CERN в том, что своим экспериментом организация подвергают опасности человечество и нарушают гарантированное Конвенцией по правам человека "право на жизнь", однако иски были отклонены , , , , . Пресса сообщала, что из-за слухов о скором конце света после запуска БАК в Индии покончила с собой 16-летняя девушка .

В русской блогосфере появился мем "скорее бы коллайдер", который можно перевести как "скорее бы конец света, невозможно больше смотреть на это безобразие" . Популярностью пользовался анекдот "У физиков есть традиция - один раз в 14 миллиардов лет собираться и запускать коллайдер" .

Научные результаты

Первые данные экспериментов на БАК были опубликованы в декабре 2009 года . 13 декабря 2011 года специалисты CERN заявили, что в результате исследований на БАК им удалось сузить границы вероятной массы бозона Хиггса до 115,5-127 ГэВ и обнаружить признаки существования искомой частицы с массой около 126 ГэВ , . В том же месяце было впервые объявлено об открытии в ходе экспериментов на БАК новой частицы, не являвшейся бозоном Хиггса и получившей название χb (3P) , .

4 июля 2012 года руководство CERN официально заявило об обнаружении с вероятностью 99,99995 процента новой частицы в области масс около 126 ГэВ, которая, по предположениям ученых, скорее всего и была бозоном Хиггса. Этот результат руководитель одной из двух научных коллабораций, работавших на БАК, Джо Инкандела (Joe Incandela) назвал "одним из величайших наблюдений в этой области науки за последние 30-40 лет", а сам Питер Хиггс объявил обнаружение частицы "концом целой эры в физике" , , .

Будущие проекты

В 2013 году CERN планирует модернизировать БАК, установив на него более мощные детекторы и увеличив общую мощность коллайдера. Проект модернизации называют Супер большим адронным коллайдером (Super Large Hadron Collider, SLHC) . Также планируется строительство Международного линейного коллайдера (International Linear Collider, ILC). Его труба будет длиной в несколько десятков километров, и он должен быть дешевле БАК за счет того, что в его конструкции не требуется применять дорогостоящие сверхпроводящие магниты. Строить ILC, возможно, будут в Дубне , , .

Также некоторые специалисты CERN и ученые США и Японии предлагали после окончания работы БАК начать работу над новым Очень большим адронным коллайдером (Very Large Hadron Collider, VLHC) , .

Использованные материалы

Chris Wickham, Robert Evans . "It"s a boson:" Higgs quest bears new particle. - Reuters , 05.07.2012

Lucy Christie, Marie Noelle Blessig . Physique: decouverte de la "particule de Dieu"? - Agence France-Presse , 04.07.2012

Dennis Overbye . Physicists Find Elusive Particle Seen as Key to Universe. - The New York Times , 04.07.2012

Adlene Hicheur condamne a cinq ans de prison, dont un avec sursis. - L"Express , 04.05.2012

Particle collider escalates quest to explore universe. - Agence France-Presse , 06.04.2012

Jonathan Amos . LHC reports discovery of its first new particle. - BBC News , 22.12.2011

Леонид Попов . На БАК поймана первая новая частица. - Membrana , 22.12.2011

Stephen Shankland . CERN physicists find hint of Higgs boson. - CNET , 13.12.2011

Paul Rincon . LHC: Higgs boson "may have been glimpsed". - BBC News , 13.12.2011

Yes, we did it! - CERN Bulletin , 31.03.2010

Richard Webb . Physicists race to publish first results from LHC. - New Scientist , 21.12.2009

Press Release . Two circulating beams bring first collisions in the LHC. - CERN (cern.ch) , 23.11.2009

Particles are back in the LHC! - CERN (cern.ch) , 26.10.2009

First lead ions in LHC. - LHC Injection Tests (lhc-injection-test.web.cern.ch) , 26.10.2009

Charles Bremner, Adam Sage . Hadron Collider physicist Adlene Hicheur charged with terrorism. - The Times , 13.10.2009

Dennis Overbye . French Investigate Scientist in Formal Terrorism Inquiry. - The New York Times , 13.10.2009

What"s left of the Superconducting Super Collider? - The Physics Today , 06.10.2009

LHC to run at 3.5 TeV for early part of 2009-2010 run rising later. - CERN (cern.ch) , 06.08.2009

LHC Experiments Committee. - CERN (cern.ch) , 30.06.2009