Основные поражающие факторы воздушного ядерного взрыва. Боевые свойства и поражающие факторы ядерного оружия

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, сооружения и различные материальные средства.

Основными поражающими факторами ядерного взрыва являются:

Ударная волна;

Световое излучение;

Проникающая радиация;

Радиоактивное заражение местности;

Электромагнитный импульс;

При этом образуется растущий огненный шар диаметром до нескольких сотен метров, видимый на расстоянии 100 - 300 км. Температура светящейся области ядерного взрыва колеблется от миллионов градусов в начале образования до нескольких тысяч в конце его и длится до 25 сек. Яркость светового излучения в первую секунду (80-85% световой энергии) в несколько раз превосходит яркость Солнца, а образовавшийся огненный шар при ядерном взрыве виден на сотни километров. Остальное количество (20-15%) в последующий отрезок времени от 1 - 3 сек.

Наибольшее поражающее значение имеют инфракрасные лучи, вызывающие мгновенные ожоги открытых участков тела и ослепление. Нагрев может быть настолько сильным, что возможно обугливание или воспламенение различного материала и растрескивание или оплавление строительных материалов, что может приводить к огромным пожарам в радиусе несколько десятков километров. Люди которые подверглись воздействию огненного шара от «Малыша» г. Хиросима на расстоянии до 800 метров были сожжены настолько, что превратились в пыль.

При этом действие светового излучения ядерного взрыва эквивалентно массированному применению зажигательного оружия, которое рассматривается в пятом разделе.

Кожный покров человека также поглощает энергию светового излучения, за счет чего может нагреваться до высокой температуры и получать ожоги. В первую очередь ожоги возникают на открытых участках тела, обращенных в сторону взрыва. Если смотреть в сторону взрыва незащищенными глазами, то возможно поражение глаз, приводящее к ослеплению, полной потере зрения.

Ожоги, вызываемые световым излучением, не отличаются от обычных, вызываемых огнем или кипятком, они тем сильнее, чем меньше расстояние до взрыва и чем больше мощность боеприпаса. При воздушном взрыве поражающее действие светового излучения больше, чем при наземном той же мощности.

Поражающее действие светового излучения характеризуется световым импульсом. В зависимости от воспринятого светового импульса ожоги делятся на три степени. Ожоги первой степени проявляются в поверхностном поражении кожи: покраснении, при пухлости, болезненности. При ожогах второй степени на коже появляются пузыри. При ожогах третьей степени наблюдается омертвление кожи и образование язв.

При воздушном взрыве боеприпаса мощностью 20 кт и прозрачности атмосферы порядка 25 км ожоги первой степени будут наблюдаться в радиусе 4,2 км от центра взрыва; при взрыве заряда мощностью 1 Мт это расстояние увеличится до 22,4 км. ожоги второй степени проявляются на расстояниях 2,9 и 14,4 км и ожоги третьей степени на расстояниях 2,4 и 12,8 км соответственно для боеприпасов мощностью 20 кт и 1Мт.

Световое излучение способно вызвать массовые пожары в населенных пунктах, в лесах, степях, на полях.

Защитить от светового излучения могут любые преграды, не пропускающие свет: укрытие, тень дома и т. Интенсивность светового излучения сильно зависит от метеорологических условий. Туман, дождь и снег ослабляют его воздействие, и наоборот, ясная и сухая погода благоприятствует возникновению пожаров и образованию ожогов.

Для оценки ионизации атомов среды, а следовательно, и поражающего действия проникающей радиации на живой организм введено понятие дозы облучения (или дозы радиации), единицей измерения которой является рентген (р). Дозе радиации 1 р. соответствует образование в одном кубическом сантиметре воздуха приблизительно 2 миллиардов пар ионов. В зависимости от дозы излучения различают четыре степени лучевой болезни.

Первая (легкая) возникает при получении человеком дозы от 100 до 200 р. Она характеризуется: рвоты нет или позже 3 часа, однократно, общей слабостью, легкой тошнотой, кратковременная головная боль, сознание ясное, головокружением, повышением потливости, наблюдается периодическое повышение температуры.

Вторая (средняя) степень лучевой болезни развивается при получении дозы 200 - 400 р; в этом случае признаки поражения: рвота через 30 мин - 3 часа, 2 раза и более, постоянная головная боль, сознание ясное, расстройство функций нервной системы, повышение температуры, более тяжелое недомогание, желудочно-кишечное расстройство проявляются более резко и быстрее, человек становится не дееспособным. Возможны смертельные исходы (до 20%).

Третья (тяжелая) степень лучевой болезни возникает при дозе 400 - 600 р. Характеризуется: сильная и многократная рвота, постоянной головной болью, временами сильная, тошнотой, отмечают тяжелое общее состояние, иногда потерю сознания или резкое возбуждение, кровоизлияния в слизистые оболочки и кожу, некроз слизистых оболочек в области десен, температура может превышать 38 - 39 градусов, головокружением и другими недомоганиями; Ввиду ослабления защитных сил организма появляются различные инфекционные осложнения нередко приводящие к смертельному исходу. Без лечения болезнь в 20 - 70% случаев заканчивается смертью, чаще от инфекционных осложнений или от кровотечений.

Крайне тяжелая, при дозах свыше 600 р.первичные признаки проявляются: сильная и многократная рвота через 20 - 30 мин до 2 и более дней, упорная сильная головная боль, сознание может быть спутанным, без лечения обычно заканчивается смертью в течении до 2 недель.

В начальном периоде ОЛБ частыми проявлениями является тошнота, рвота, только в тяжелых случаях понос. Общая слабость, раздражительность, лихорадка, рвота являются проявлением как облучения головного мозга, так и общей интоксикации. Важными признаками лучевого воздействия является гиперемия слизистых оболочек и кожи, особенно в местах высоких доз облучения, учащение пульса, повышение, а затем снижение артериального давления вплоть до коллапса, неврологические симптомы (в частности, нарушение координации, менингеальные знаки). Выраженность симптомов корректируется с дозой облучения.

Доза облучения может быть однократной и многократной. По данным иностранной печати доза однократного облучения до 50 р (полученная за время до 4 суток) практически безопасна. Многократной называется доза полученная за время свыше 4 суток. Однократное облучение человека дозой 1 Зв и более называют острым облучением.

Каждый из этих более чем 200 изотопов имеет свой период полураспада. К счастью, большая часть продуктов деления — короткоживущие изотопы, т. е. имеют периоды полураспада, измеряемые секундами, минутами, часами или днями. А это значит, что спустя непродолжительное время (порядка 10-20 периодов полураспада) короткоживущий изотоп распадается почти полностью и его радиоактивность не будет представлять практической опасности. Так, период полураспада теллура -137 равен 1 мин, т. е. через 15-20 мин от него почти ничего не останется.

В чрезвычайной обстановке важно знать не столько периоды полураспада каждого изотопа, сколько время, в течение которого уменьшается радиоактивность всей суммы радиоактивных продуктов деления. Существует очень простое и удобное правило, которое позволяет судить о скорости уменьшения радиоактивности продуктов деления во времени.

Это правило называется правилом «семь — десять». Смысл его заключается в том, что если время, прошедшее после взрыва ядерной бомбы, увеличивается в семь раз, то активность продуктов деления уменьшается в 10 раз. Например, уровень загрязнения местности продуктами распада через час после взрыва ядерного боеприпаса составляет 100 условных единиц. Через 7 часов после взрыва (время увеличилось в 7 раз) уровень загрязнения уменьшится до 10 единиц (активность уменьшилась в 10 раз), через 49 часов — до 1 единицы и т. д.

За первые сутки после взрыва активность продуктов деления уменьшается почти в 6000 раз. И в этом смысле время оказывается нашим большим союзником. Но с течением времени спад активности идет все медленнее. Через сутки после взрыва для уменьшения активности в 10 раз потребуется уже неделя, через месяц после взрыва — 7 месяцев и т. д. Однако следует отметить, что спад активности по правилу «семь — десять» происходит в первые полгода после взрыва. В последующее время спад активности продуктов деления идет быстрее, чем по правилу «семь — десять».

Количество продуктов деления, образующихся при взрыве ядерной бомбы, в весовом выражении невелико. Так, на каждую тысячу тонн мощности взрыва образуется около 37 г продуктов деления (37 кг на 1 Мт). Продукты деления, попадая в организм в значительных количествах, могут вызвать высокий уровень облучения и соответствующие изменения состоянии здоровья. Количество продуктов деления, образующихся при взрыве, чаще оценивают не в весовых единицах, а в единицах радиоактивности.

Как известно, единицей радиоактивности - является кюри. Одно кюри - это такое количество радиоактивного изотопа, которое дает 3,7-10 10 распадов в секунду -(37 млрд. распадов в секунду). Чтобы представить величину этой единицы, (Напомним, что активность 1 г. радия составляет приблизительно 1 кюри, а допустимым количеством радия в человеческом организме является 0,1 мкг этого элемента.

Перейдя от весовых единиц к единицам радиоактивности, можно сказать, что при взрыве ядерной бомбы мощностью в 10 млн. т образуются продукты распада общей активностью порядка 10"15 кюри (1000000000000000 кюри). Эта активность постоянно, а в первое время очень быстро, уменьшается, причем ослабление ее в течение первых суток после взрыва превышает 6000 раз.

Радиоактивные осадки выпадают на больших расстояниях от места ядерного взрыва (значительное заражение местности может быть на расстоянии порядка нескольких сотен километров). Они представляют собой аэрозоли (частички, взвешенные в воздухе). Размеры аэрозолей самые разные: от крупных частиц с диаметром в несколько миллиметров до мельчайших, не видимых глазом частиц, измеряемых десятыми, сотыми и еще меньшими долями микрона.

Большая часть радиоактивных осадков (около 60% пря наземном взрыве) выпадает в первые сутки после взрыва. Это местные осадки. В последующем же внешняя среда может дополнительно загрязняться тропосферными или стратосферными осадками.

В зависимости от «возраста» осколков (г. е. времени, прошедшего с момента ядерного взрыва) меняется и их изотопный состав, В «молодых» продуктах деления основная активность представлена короткоживущими изотопами. Активность «старых» продуктов деления представлена главным образом долгоживущими изотопами, так как к этому времени коротко-живущие изотопы уже распались, превратившись в стабильные. Поэтому число изотопов продуктов деления со временем постоянно сокращается. Так, через месяц после взрыва остается всего 44, а через год — 27 изотопов.

Соответственно возрасту осколков меняется и удельная ак-тивность каждого изотопа в общей смеси продуктов распада. Так, изотоп стронция-90, имеющий значительный период по-лураспада (Т1/2 = 28,4 года) и образующийся при взрыве в незначительном количестве, «переживает» коротко живущие изотопы, в связи с чем его удельная активность постоянно увеличивается.

Таким образом, удельная активность стронция-90 увеличивается за 1 год с 0,0003% до 1,9%. Если выпадет значительное количество радиоактивных осадков, то наиболее тяжелая обстановка будет в течение первых двух недель после взрыва. Данное положение хорошо иллюстрируется следующим примером: если через час после взрыва мощность дозы гамма-излучения от радиоактивных осадков достигнет 300 рентген в час (р/час), то суммарная доза облучения (без защиты) составит в течение года 1200 р, из них 1000 р (т. е. почти всю годовую дозу облучения) человек получит за первые 14 дней. Поэтому наибольшие уровни заражения внешней среды радиоактивными осадками будут именно в эти две недели.

Основная часть долгоживущих изотопов сосредоточена в радиоактивном облаке, которое образуется после взрыва. Высота поднятия облака для боеприпаса мощностью 10 кт равна 6 км, для боеприпаса мощностью 10 Мт она составляет 25 км.

Электромагнитный импульс — это кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма-лучей и нейтронов , испускаемых при этом с атомами окружающей среды. Следствием его воздействия могут быть перегорание и пробои отдельных элементов радиоэлектронной и электротехнической аппаратуры, электрических сетей.

Наиболее надежным средством защиты от всех поражающих факторов ядерного взрыва являются защитные сооружения. На открытой местности и в поле можно для укрытия использовать прочные местные предметы, обратные скаты высот и складки местности.

При действиях в зонах заражения для защиты органов дыхания, глаз и открытых участков тела от радиоактивных веществ следует использовать специальные защитные средства.

ХИМИЧЕСКОЕ ОРУЖИЕ

Характеристика и боевые свойства

Химическим оружием называют отравляющие вещества и средства, используемые для поражения человека.

Основу поражающего действия химического оружия составляют отравляющие вещества. Они обладают настолько высокими токсическими свойствами, что некоторые зарубежные военные специалисты приравнивают 20 кг нервно - паралитических отравляющих веществ по эффективности поражающего действия к ядерной бомбе, эквивалентной 20 Мт тротила. В обоих случаях может возникнуть очаг поражения площадью в 200-300 км.

По своим поражающим свойствам ОВ отличаются от других боевых средств:

Они способны проникать вместе с воздухом в различные сооружения, в боевую технику и наносить поражения находящимся в них людям;

Они могут сохранять свое поражающее действие в воздухе, на местности и в различных объектах на протяжении некоторого, иногда довольно продолжительного времени;

Распространяясь в больших объемах воздуха и на больших площадях, они наносят поражение всем людям, находящимся в сфере их действия без средств защиты;

Пары ОВ способны распространяться по направлению ветра на значительные расстояния от районов непосредственного применения химического оружия.

Химические боеприпасы различают по следующим характеристикам:

Стойкости применяемого ОВ;

Характеру физиологического воздействия ОВ на организм человека;

Средствам и способам применения;

Тактическому назначению;

Быстроте наступающего воздействия;

Саратовский медицинский университет СГМУ им.Разумовского

Медицинский колледж отделение сестренское дело

Реферат на тему :” Поражающие факторы ядерного оружия

Студентки 102 группы

Куликовой Валерии

Проверил Старостенко В.Ю

Введение…………………………………………………………………………...2

Поражающие факторы ядерного оружия………………………………………..3

Ударная волна…………………………………………………………………......3

Световое излучение……………………………………………………………….7

Проникающая радиация…………………………………………………………..8

Радиоактивное заражение………………………………………………….........10

Электромагнитный импульс……………………………………………….........12

Заключение………………………………………………………………….........14

Список литературы………………………………………………………………15

Введение.

Ядерным называется оружие, поражающее действие которого обусловлено энергией, выделяющейся при ядерных реакциях деления и синтеза. Оно является самым мощным видом оружия массового поражения. Ядерное оружие предназначено для массового поражения людей, уничтожения или разрушения административных и промышленных центров, различных объектов, сооружений и техники.

Поражающее действие ядерного взрыва зависит от мощности боеприпаса, вида взрыва, типа ядерного заряда. Мощность ядерного боеприпаса характеризуется тротиловым эквивалентом. Единица ее измерения - т, кт, Мт.

При мощных взрывах, характерных для современных термоядерных зарядов наибольшее разрушение оказывает ударная волна, а далее всего распространяется световое излучение.

Я рассмотрю поражающие факторы наземного ядерного взрыва и их воздействие на человека, промышленные объекты и т.д. И дам краткую характеристику поражающих факторов ядерного оружия.

Поражающие факторы ядерного оружия и защита.

Поражающими факторами ядерного взрыва (ЯВ) являются: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение, электромагнитный импульс.

Электромагнитный импульс (ЭМИ) влияния на людей по понятным причинам не оказывает, зато выводит из строя электронное оборудование.

При взрыве в атмосфере примерно 50% энергии взрыва расходуется на образование ударной волны, 30-40%- на световое излучение, до 5%- на проникающую радиацию и электромагнитный импульс и до 15%- на радиоактивное заражение. Действие поражающих факторов ядерного взрыва на людей и элементы объектов происходит не одновременно и различается по длительности воздействия, характеру и масштабам.

Такое разнообразие поражающих факторов говорит о том, что ядерный взрыв представляет собой гораздо более опасное явление, чем взрыв аналогичного по энерговыходу количества обычной взрывчатки.

Ударная волна.

Ударная волна - это область резкого сжатия среды, которая распространяется в виде сферического слоя во все стороны от места взрыва со сверхзвуковой скоростью. В зависимости от среды распространения различают ударную волну в воздухе, в воде или грунте.

Воздушная ударная волна - это зона сжатого воздуха, распространяющаяся от центра взрыва. Ее источник - высокое давление и температура в точке взрыва. Основные параметры ударной волны, определяющие ее поражающее действие:

    избыточное давление во фронте ударной волны, ΔР ф, Па (кгс/см 2);

    скоростной напор, ΔР ск, Па (кгс/см 2).

Вблизи центра взрыва скорость распространения ударной волны в несколько раз превышает скорость звука в воздухе. С увеличением расстояния от места взрыва скорость распространения волны быстро падает, а ударная волна ослабевает. Воздушная ударная волна при ядерном взрыве средней мощности проходит примерно 1000 метров за 1,4 секунды, 2000 метров - за 4 секунды, 3000 метров - за 7 секунд, 5000 метров - за 12 секунд. Перед фронтом ударной волны давление в воздухе равно атмосферному Р 0 . С приходом фронта ударной волны в данную точку пространства давление резко (скачком) увеличивается и достигает максимального, затем, по мере удаления фронта волны, давление постепенно снижается и через некоторый промежуток времени становится равным атмосферному. Образовавшийся слой сжатого воздуха называют фазой сжатия . В этот период ударная волна обладает наибольшим разрушающим действием. В дальнейшем, продолжая уменьшаться, давление становится ниже атмосферного и воздух начинает двигаться в направлении, противоположном распространению ударной волны, то есть к центру взрыва. Эта зона пониженного давления называется фазой разрежения.

Непосредственно за фронтом ударной волны, в области сжатия, движутся массы воздуха. Вследствие торможения этих масс воздуха, при встрече с преградой возникает давление скоростного напора воздушной ударной волны.

Скоростной напор ΔР ск - это динамическая нагрузка, создаваемая потоком воздуха, движущимся за фронтом ударной волны. Метательное действие скоростного напора воздуха заметно сказывается в зоне с избыточным давлением более 50 кПа, где скорость перемещения воздуха более 100 м/с. При давлениях менее 50 кПа влияние ΔР ск быстро падает.

Основные параметры ударной волны, характеризующие ее разрушающее и поражающее действие: избыточное давление во фронте ударной волны; давление скоростного напора; продолжительность действия волны - длительность фазы сжатия и скорость фронта ударной волны.

Ударная волна в воде при подводном ядерном взрыве качественно напоминает ударную волну в воздухе. Однако на одних и тех же расстояниях давление во фронте ударной волны в воде гораздо больше, чем в воздухе, а время действия - меньше.

При наземном ядерном взрыве часть энергии взрыва расходуется на образование волны сжатия в грунте. В отличие от ударной волны в воздухе она характеризуется менее резким увеличением давления во фронте волны, а также более медленным его ослаблением за фронтом. При взрыве ядерного боеприпаса в грунте основная часть энергии взрыва передается окружающей массе грунта и производит мощное сотрясение грунта, напоминающее по своему действию землетрясения.

При воздействии на людей ударная волна вызывает различные по степени тяжести поражения (травмы): прямые - от избыточного давления и скоростного напора; косвенные - от ударов обломками ограждающих конструкций, осколков стекла и т.д.

По степени тяжести поражения людей от ударной волны делятся:

    на легкие при ΔР ф = 20-40 кПа (0,2-0,4 кгс/см 2), (вывихи, ушибы, звон в ушах, головокружение, головная боль);

    средние при ΔР ф = 40-60 кПа (0,4-0,6 кгс/см 2), (контузии, кровь из носа и ушей, вывихи конечностей);

    тяжелые при ΔР ф ≥ 60-100 кПа (тяжелые контузии, повреждения слуха и внутренних органов, потеря сознания, кровотечением из носа и ушей, переломы);

    смертельные при ΔР ф ≥ 100 кПа. Отмечаются разрывы внутренних органов, переломы костей, внутренние кровотечения, сотрясение мозга, длительная потеря сознания.

Зоны разрушения

Характер разрушений промышленных зданий в зависимости от нагрузки, создаваемой ударной волной. Общую оценку разрушений, вызванных ударной волной ядерного взрыва, принято давать по степени тяжести этих разрушений:

    слабые разрушения при ΔР ф ≥ 10-20 кПа (повреждения окон, дверей, легких перегородок, подвалы и нижние этажи сохраняются полностью. Находиться в здании безопасно и оно может эксплуатироваться после проведения текущего ремонта);

    средние разрушения при ΔР ф = 20-30 кПа (трещины в несущих элементах конструкций, обрушение отдельных участков стен. Подвалы сохраняются. После расчистки и ремонта может быть использована часть помещений нижних этажей. Восстановление зданий возможно при проведении капитального ремонта);

    сильные разрушения при ΔР ф ≥ 30-50 кПа (обрушение 50% конструкций зданий. Использование помещений становится невозможным, а ремонт и восстановление - чаще всего нецелесообразным);

    полные разрушения при ΔР ф ≥ 50 кПа (разрушение всех элементов конструкции зданий. Использовать здание невозможно. Подвальные помещения при сильных и полных разрушениях могут сохраняться и после разбора завалов частично использоваться).

Гарантированная защита людей от ударной волны обеспечивается при укрытии их в убежищах. При отсутствии убежищ используются противорадиационные укрытия, подземные выработки, естественные укрытия и рельеф местности.

Световое излучение.

Световое излучение ядерного взрыва при непосредственном воздействии вызывает ожоги открытых участков тела, временное ослепление или ожоги сетчатки глаз. Ожоги разделяются по тяжести поражения организма на четыре степени.

    Ожоги первой степени выражаются в болезненности, покраснении и припухлости кожи. Они не представляют серьезной опасности и быстро вылечиваются без каких-либо последствий.

    Ожоги второй степени (160-400 кДж/м 2), образуются пузыри, заполненные прозрачной белковой жидкостью; при поражении значительных участков кожи человек может потерять на некоторое время трудоспособность и нуждается в специальном лечении.

    Ожоги третьей степени (400-600 кДж/м 2) характеризуются омертвлением мышечных тканей и кожи с частичным поражением росткового слоя.

    Ожоги четвертой степени (≥ 600 кДж/м 2): омертвление кожи более глубоких слоев тканей, возможна как временная, так и полная потеря зрения и т.д.. Поражение ожогами третьей и четвертой степеней значительной части кожного покрова может привести к смертельному исходу.

Защита от светового излучения более проста, чем от других поражающих факторов. Световое излучение распространяется прямолинейно. Любая непрозрачная преграда может служить защитой от него. Используя для укрытия ямы, канавы, бугры, простенки между окнами, различные виды техники и тому подобное, можно значительно ослабить или вовсе избежать ожогов от светового излучения. Полную защиту обеспечивают убежища и противорадиационные укрытия.

Радиоактивное заражение.

На радиоактивно зараженной местности источниками радиоактивного излучения являются: осколки (продукты) деления ядерного взрывчатого вещества (200 радиоактивных изотопов 36 химических элементов), наведенная активность в грунте и других материалах, не разделившаяся часть ядерного заряда.

Излучение радиоактивных веществ состоит из трех видов лучей: альфа, бета и гамма. Наибольшей проникающей способностью обладают гамма лучи, меньшей - бета частицы и незначительной- альфа частицы. Радиоактивное заражение имеет ряд особенностей: большая площадь поражения, длительность сохранения поражающего действия, трудности обнаружения радиоактивных веществ, не имеющих цвета, запаха и других внешних признаков.

Зоны радиоактивного заражения образуются в районе ядерного взрыва и на следе радиоактивного облака. Наибольшая зараженность местности будет при наземных (надводных) и подземных (подводных) ядерных взрывах.

Степень радиоактивного заражения местности характеризуется уровнем радиации на определенное время после взрыва и экспозиционной дозой радиации (гамма излучения), полученной за время от начала заражения до времени полного распада радиоактивных веществ.

В
зависимости от степени радиоактивного заражения и возможных последствий внешнего облучения в районе ядерного взрыва и на следе радиоактивного облака выделяют зоны умеренного, сильного, опасного и чрезвычайно опасного заражения.

Зона умеренного заражения (зона А). (40 Р)Работы на открытой местности, расположенной в середине зоны или у ее внутренней границы, должны быть прекращены на несколько часов.

Зона сильного заражения (зона Б). (400 Р) В зоне Б работы на объектах прекращаются сроком до 1 суток, рабочие и служащие укрываются в защитных сооружениях ГО, подвалах или других укрытиях.

Зона опасного заражения (зона В). (1200 Р) В этой зоне работы прекращаются от 1 до 3-4 суток, рабочие и служащие укрываются в защитных сооружениях ГО.

Зона чрезвычайно опасного заражения (зона Г). (4000 Р) В зоне Г работы на объектах прекращаются на 4 и более суток, рабочие и служащие укрываются в убежищах. По истечении указанного срока уровень радиации на территории объекта спадает до значений, обеспечивающих безопасную деятельность рабочих и служащих в производственных помещениях.

Радиоактивно зараженная местность может вызвать поражение людей как за счет внешнего γ- излучения от осколков деления, так и от попадания радиоактивных продуктов α,β - излучения на кожные покровы и внутрь организма человека. Внутреннее поражение людей радиоактивными веществами может произойти при попадании их внутрь организма главным образом с пищей. С воздухом и водой радиоактивные вещества в организм, по-видимому, будут попадать в таких количествах, которые не вызовут острого лучевого поражения с потерей трудоспособности людей. Всасывающиеся радиоактивные продукты ядерного взрыва распределяются в организме крайне неравномерно.

Основным способом защиты населения следует считать изоляцию людей от внешнего воздействия радиоактивных излучений, а также исключение условий, при которых возможно попадание радиоактивных веществ внутрь организма человека вместе с воздухом и пищей.

Для защиты людей от попадания радиоактивных веществ в органы дыхания и на кожу при работе в условиях радиоактивного заражения применяют средства индивидуальной защиты. При выходе из зоны радиоактивного заражения необходимо пройти санитарную обработку, то есть удалить радиоактивные вещества, попавшие на кожу, и провести дезактивацию одежды. Таким образом, радиоактивное заражение местности, хотя и представляет чрезвычайно большую опасность для людей, но если своевременно принять меры по защите, то можно полностью обеспечить безопасность людей и их постоянную работоспособность.

Электромагнитный импульс.

Электромагнитный импульс (ЭМИ) - это неоднородное электромагнитное излучение в виде мощного короткого импульса (с длиной волны от 1 до 1000м), которое сопровождает ядерный взрыв и поражает электрические, электронные системы и аппаратуру на значительных расстояниях. Источник ЭМИ - это процесс взаимодействия γ-квантов с атомами среды. Поражающим параметром ЭМИ является мгновенное нарастание (и спад) напряженности электрического и магнитного полей под действием мгновенного γ-импульса (несколько миллисекунд).

При проектировании систем и аппаратуры необходимо разрабатывать защиту от ЭМИ. Защита от ЭМИ достигается экранированием линий энергоснабжения и управления, а также аппаратуры. Все наружные линии должны быть двухпроводными, хорошо изолированными от земли, с малоинерционными разрядниками и плавкими вставками.

В зависимости от характера воздействия ЭМИ могут быть рекомендованы следующие способы защиты: 1) применение двухпроводных симметричных линий, хорошо изолированных между собой и от земли; 2) экранирование подземных кабелей медной, алюминиевой, свинцовой оболочкой; 3) электромагнитное экранирование блоков и узлов аппаратуры; 4) использование различного рода защитных входных устройств и грозозащитных средств.

Заключение.

Ядерное оружие - самое опасное из всех известных на сегодняшний день средств массового поражения. И, несмотря на это, его количества с каждым годом всё увеличиваются. Это обязывает каждого человека знать способы защиты, чтобы предотвратить смерть и, может быть, даже не одну. Для того, чтобы защититься, необходимо иметь хотя бы малейшее представление о ядерном оружии и его действии. Именно в этом и заключается основная задача гражданской обороны: дать человеку знания для того, чтобы он мог сам себя защитить (причем это касается не только ядерного оружия, а вообще всех опасных для жизни людей ситуаций).

К поражающим факторам относятся:

1) Ударная волна. Характеристика : скоростной напор, резкое повышение давления. Последствия : разрушения механическим воздействием ударной волны и поражения людей и животных вторичными факторами. Защита:

2) Световое излучение. Характеристика: очень высокая температура, ослепляющая вспышка. Последствия : пожары и ожоги кожи людей. Защита: использование убежищ, простейших укрытий и защитных свойств местности.

3) Проникающая радиация. Характеристика : альфа, бета, гамма излучения. Последствия: поражение живых клеток организма, лучевая болезнь. Защита: использование убежищ, противорадиационных укрытий простейших укрытий и защитных свойств местности.

4) Радиоактивное заражение. Характеристика : большая площадь поражения, длительность сохранения поражающего действия, трудности обнаружения радиоактивных веществ, не имеющих цвета, запаха и других внешних признаков. Последствия: лучевая болезнь, внутреннее поражение радиоактивными веществами. Защита: применение убежищ, противорадиационных укрытий, простейших укрытий, защитных свойств местности и средств индивидуальной защиты.

5) Электромагнитный импульс. Характеристика: кратковременное электромагнитное поле. Последствия: возникновение коротких замыканий, пожаров, действие вторичных факторов на человека (ожоги). Защита : хорошо изолировать линии, проводящие ток.

Ядерный взрыв -- неуправляемый процесс высвобождения большого количества тепловой и лучистой энергии в результате цепной ядерной реакции деления или реакции термоядерного синтеза за очень малый промежуток времени.

По своему происхождению ядерные взрывы являются либо продуктом деятельности человека на Земле и в околоземном космическом пространстве, либо природными процессами на некоторых видах звёзд. Искусственные ядерные взрывы -- мощное оружие, предназначенное для уничтожения крупных наземных и защищённых подземных военных объектов, скоплений войск и техники противника (в основном тактическое ядерное оружие), а также полное подавление и уничтожение противоборствующей стороны: разрушение больших и малых населённых пунктов с мирным населением и стратегической промышленности (Стратегическое ядерное оружие).

Ядерный взрыв может иметь мирное применение:

· перемещение больших масс грунта при строительстве;

· обрушение препятствий в горах;

· дробление руды;

· увеличение нефтеотдачи нефтяных местрождений;

· перекрывание аварийных нефтяных и газовых скважин;

· поиск полезных ископаемых сейсмическим зондированием земной коры;

· движущая сила для ядерных и термоядерных импульсных космических аппаратов (например, нереализованный проект корабля "Орион" и проект межзвёздного автоматического зонда "Дедал");

· научные исследования: сейсмология, внутреннее строение Земли, физика плазмы и многое другое.

В зависимости от задач, решаемых с применением ядерного оружия, ядерные взрывы подразделяют на следующие виды:

Ш высотные (выше 30 км);

Ш воздушные (ниже 30 км, но не касается поверхности земли/воды);

Ш наземные/надводные (касается поверхности земли/воды);

Ш подземные/подводные (непосредственно под землей или под водой).

Поражающие факторы ядерного взрыва

При взрыве ядерного боеприпаса за миллионные доли секунды выделяется колоссальное количество энергии. Температура повышается до нескольких миллионов градусов, а давление достигает миллиардов атмосфер. Высокие температура и давление вызывают световое излучение и мощную ударную волну. Наряду с этим взрыв ядерного боеприпаса сопровождается испусканием проникающей радиации, состоящей из потока нейтронов и гамма_квантов. Облако взрыва содержит огромное количество радиоактивных продуктов - осколков деления ядерного взрывчатого вещества, которые выпадают по пути движения облака, в результате чего происходит радиоактивное заражение местности, воздуха и объектов. Неравномерное движение электрических зарядов в воздухе, возникающее под действием ионизирующих излучений, приводит к образованию электромагнитного импульса.

Основными поражающими факторами ядерного взрыва являются:

Ш ударная волна;

Ш световое излучение;

Ш проникающая радиация;

Ш радиоактивное заражение;

Ш электромагнитный импульс.

Ударная волна ядерного взрыва - один из основных поражающих факторов. В зависимости от того, в какой среде возникает и распространяется ударная волна - в воздухе, воде или грунте, ее называют соответственно воздушной волной, ударной волной в воде и сейсмовзрывной волной (в грунте).

Воздушной ударной волной называется область резкого сжатия воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.

Ударная волна вызывает у человека открытые и закрытые травмы различной степени тяжести. Большую опасность для человека представляет и косвенное воздействие ударной волны. Разрушая здания, убежища и укрытия, она может послужить причиной тяжелых травм.

Избыточное давление и метательное действие скоростного напора также являются основными причинами вывода из строя различных сооружений и техники. Повреждения техники в результате отбрасывания (при ударе о грунт) могут быть более значительными, чем от избыточного давления.

Световое излучение ядерного взрыва представляет собой электромагнитное излучение, включающее видимую ультрафиолетовую и инфракрасную области спектра.

Энергия светового излучения поглощается поверхностями освещаемых тел, которые при этом нагреваются. Температура нагрева может быть такой, что поверхность объекта обуглится, оплавится или воспламенится. Световое излучение может вызывать ожоги открытых участков тела человека, а в темное время суток - временное ослепление.

Источником светового излучения является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров конструкционных материалов боеприпаса и воздуха, а при наземных взрывах - и испарившегося грунта. Размеры светящейся области и время ее свечения зависят от мощности, а форма - от вида взрыва.

Время действия светового излучения наземных и воздушных взрывов мощностью 1 тыс. т составляет примерно 1 с, 10 тыс. т - 2,2 с, 100 тыс. т - 4,6 с, 1 млн. т - 10 с. Размеры светящейся области также возрастают с увеличением мощности взрыва и составляют от 50 до 200 м при сверхмалых мощностях ядерного взрыва и 1-2 тыс. м при крупных.

Ожоги открытых участков тела человека второй степени (образование пузырей) наблюдаются на расстоянии 400-1 тыс. м при малых мощностях ядерного взрыва, 1,5-3,5 тыс. м при средних и более 10 тыс. м при крупных.

Проникающая радиация представляет собой поток гамма_излучения и нейтронов, испускаемых из зоны ядерного взрыва.

Гамма_излучение и нейтронное излучение различны по своим физическим свойствам. Общим для них является то, что они могут распространяться в воздухе во все стороны на расстояние до 2,5-3 км. Проходя через биологическую ткань, гамма- и нейтронное излучения ионизируют атомы и молекулы, входящие в состав живых клеток, в результате чего нарушается нормальный обмен веществ и изменяется характер жизнедеятельности клеток, отдельных органов и систем организма, что приводит к возникновению специфического заболевания - лучевой болезни .

Источником проникающей радиации являются ядерные реакции деления и синтеза, протекающие в боеприпасах в момент взрыва, а также радиоактивный распад осколков деления.

Время действия проникающей радиации определяется временем подъема облака взрыва на такую высоту, при которой гамма_излучение и нейтроны поглощаются толщей воздуха и не достигают земли (2,5-3 км), и составляет 15-20 с.

Степень, глубина и форма лучевых поражений, развивающихся в биологических объектах при воздействии на них ионизирующих излучений, зависит от величины поглощенной энергии излучения. Для характеристики этого показателя используется понятие поглощенной дозы , т.е. энергии, поглощенной единицей массы облучаемого вещества.

Поражающее действие проникающей радиации на людей и их работоспособность зависят от дозы излучения и времени облучения.

Радиоактивное заражение местности, приземного слоя атмосферы и воздушного пространства возникает в результате прохождения радиоактивного облака ядерного взрыва или газоаэрозольного облака радиационной аварии.

Источниками радиоактивного заражения являются:

при ядерном взрыве:

* продукты деления ядерных -- взрывчатых веществ (Pu-239, U- 235, U-238);

* радиоактивные изотопы (радионуклиды), образующиеся в грунте и других материалах под воздействием нейтронов -- наведенная активность;

* непрореагировавшая часть ядерного заряда;

При наземном ядерном взрыве светящаяся область касается поверхности земли и сотни тонн грунта мгновенно испаряются. Восходящие за огненным шаром воздушные потоки подхватывают и поднимают значительное количество пыли. В результате образуется мощное облако, состоящее из огромного количества радиоактивных и неактивных частиц, размеры которых колеблются от нескольких микрон до нескольких миллиметров.

На следе облака ядерного взрыва в зависимости от степени заражения и опасности поражения людей принято на картах (схемах) наносить четыре зоны (А, Б, В, Г).

Электромагнитный импульс.

Ядерные взрывы в атмосфере и в более высоких слоях приводят к образованию мощных электромагнитных полей с длинами волн от 1 до 1000 м и более. Эти поля в виду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ). Электромагнитный импульс возникает и в результате взрыва и на малых высотах, однако напряженность электромагнитного поля в этом случае быстро спадает по мере удаления от эпицентра. В случае же высотного взрыва, область действия электромагнитного импульса охватывает практически всю видимую из точки взрыва поверхность Земли. Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, в радиоэлектронной и радиотехнической аппаратуре. ЭМИ в указанной аппаратуре наводит электрические токи и напряжения, которые вызывают пробой изоляции, повреждение трансформаторов, сгорание разрядников, полупроводниковых приборов, перегорание плавких вставок. Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления ракетных стартовых комплексов, командных пунктов.


Введение

1.1 Ударная волна

1.2 Световое излучение

1.3 Радиация

1.4 Электромагнитный импульс

2. Защитные сооружения

Заключение

Список литературы


Введение


Ядерным называется оружие, поражающее действие которого обусловлено энергией, выделяющейся при ядерных реакциях деления и синтеза. Оно является самым мощным видом оружия массового поражения. Ядерное оружие предназначено для массового поражения людей, уничтожения или разрушения административных и промышленных центров, различных объектов, сооружений и техники.

Поражающее действие ядерного взрыва зависит от мощности боеприпаса, вида взрыва, типа ядерного заряда. Мощность ядерного боеприпаса характеризуется тротиловым эквивалентом. Единица ее измерения - т, кт, Мт.

При мощных взрывах, характерных для современных термоядерных зарядов наибольшее разрушение оказывает ударная волна, а далее всего распространяется световое излучение.


1. Поражающие факторы ядерного оружия


При ядерном взрыве действуют пять поражающих факторов: ударная волна, световое излучение, радиоактивное заражение, проникающая радиация и электромагнитный импульс. Энергия ядерного взрыва распределяется примерно так: 50% расходуется на ударную волну, 35% - на световое излучение, 10% - на радиоактивное заражение, 4% - на проникающую радиацию и 1% - на электромагнитный импульс. Высокая температура и давление вызывают мощную ударную волну и световое излучение. Взрыв ядерного боеприпаса сопровождается выходом проникающей радиации, состоящей из потока нейтронов и гамма квантов. Облако взрыва содержит огромное количество радиоактивных продуктов - осколков деления ядерного горючего. По пути движения этого облака радиоактивные продукты из него выпадают, в результате чего происходит радиоактивное заражение местности, объектов и воздуха. Не равномерное движение электрических зарядов в воздухе под воздействием ионизирующих излучений приводит к образованию электромагнитного импульса. Так формируются основные поражающие факторы ядерного взрыва. Явления, сопровождающие ядерный взрыв, в значительной мере зависят от условий и свойств среды, в которой он происходит.


1.1 Ударная волна


Ударная волна - это область резкого сжатия среды, которая распространяется в виде сферического слоя во все стороны от места взрыва со сверхзвуковой скоростью. В зависимости от среды распространения различают ударную волну в воздухе, в воде или грунте.

Воздушная ударная волна - это зона сжатого воздуха, распространяющаяся от центра взрыва. Ее источник - высокое давление и температура в точке взрыва. Основные параметры ударной волны, определяющие ее поражающее действие:

·избыточное давление во фронте ударной волны, ?Рф, Па (кгс/см2);

·скоростной напор, ?Рск, Па (кгс/см2).

Вблизи центра взрыва скорость распространения ударной волны в несколько раз превышает скорость звука в воздухе. С увеличением расстояния от места взрыва скорость распространения волны быстро падает, а ударная волна ослабевает. Воздушная ударная волна при ядерном взрыве средней мощности проходит примерно 1000 метров за 1,4 секунды, 2000 метров - за 4 секунды, 3000 метров - за 7 секунд, 5000 метров - за 12 секунд.

Перед фронтом ударной волны давление в воздухе равно атмосферному Р0. С приходом фронта ударной волны в данную точку пространства давление резко (скачком) увеличивается и достигает максимального, затем, по мере удаления фронта волны, давление постепенно снижается и через некоторый промежуток времени становится равным атмосферному. Образовавшийся слой сжатого воздуха называют фазой сжатия. В этот период ударная волна обладает наибольшим разрушающим действием. В дальнейшем, продолжая уменьшаться, давление становится ниже атмосферного и воздух начинает двигаться в направлении, противоположном распространению ударной волны, то есть к центру взрыва. Эта зона пониженного давления называется фазой разрежения.

Непосредственно за фронтом ударной волны, в области сжатия, движутся массы воздуха. Вследствие торможения этих масс воздуха, при встрече с преградой возникает давление скоростного напора воздушной ударной волны.

Скоростной напор ? Рск - это динамическая нагрузка, создаваемая потоком воздуха, движущимся за фронтом ударной волны. Метательное действие скоростного напора воздуха заметно сказывается в зоне с избыточным давлением более 50 кПа, где скорость перемещения воздуха более 100 м/с. При давлениях менее 50 кПа влияние ?Рск быстро падает.

Основные параметры ударной волны, характеризующие ее разрушающее и поражающее действие: избыточное давление во фронте ударной волны; давление скоростного напора; продолжительность действия волны - длительность фазы сжатия и скорость фронта ударной волны.

Ударная волна в воде при подводном ядерном взрыве качественно напоминает ударную волну в воздухе. Однако на одних и тех же расстояниях давление во фронте ударной волны в воде гораздо больше, чем в воздухе, а время действия - меньше.

При наземном ядерном взрыве часть энергии взрыва расходуется на образование волны сжатия в грунте. В отличие от ударной волны в воздухе она характеризуется менее резким увеличением давления во фронте волны, а также более медленным его ослаблением за фронтом. При взрыве ядерного боеприпаса в грунте основная часть энергии взрыва передается окружающей массе грунта и производит мощное сотрясение грунта, напоминающее по своему действию землетрясения.

При воздействии на людей ударная волна вызывает различные по степени тяжести поражения (травмы): прямые - от избыточного давления и скоростного напора; косвенные - от ударов обломками ограждающих конструкций, осколков стекла и т.д.

По степени тяжести поражения людей от ударной волны делятся:

·на легкие при ?Рф = 20-40 кПа (0,2-0,4 кгс/см2), (вывихи, ушибы, звон в ушах, головокружение, головная боль);

·средние при ?Рф = 40-60 кПа (0,4-0,6 кгс/см2), (контузии, кровь из носа и ушей, вывихи конечностей);

·тяжелые при ?Рф? 60-100 кПа (тяжелые контузии, повреждения слуха и внутренних органов, потеря сознания, кровотечением из носа и ушей, переломы);

поражающий фактор ядерное оружие

·смертельные при ?Рф? 100 кПа. Отмечаются разрывы внутренних органов, переломы костей, внутренние кровотечения, сотрясение мозга, длительная потеря сознания.

Характер разрушений промышленных зданий в зависимости от нагрузки, создаваемой ударной волной. Общую оценку разрушений, вызванных ударной волной ядерного взрыва, принято давать по степени тяжести этих разрушений:

·слабые разрушения при ?Рф? 10-20 кПа (повреждения окон, дверей, легких перегородок, подвалы и нижние этажи сохраняются полностью. Находиться в здании безопасно и оно может эксплуатироваться после проведения текущего ремонта);

·средние разрушения при ?Рф = 20-30 кПа (трещины в несущих элементах конструкций, обрушение отдельных участков стен. Подвалы сохраняются. После расчистки и ремонта может быть использована часть помещений нижних этажей. Восстановление зданий возможно при проведении капитального ремонта);

·сильные разрушения при ?Рф? 30-50 кПа (обрушение 50% конструкций зданий. Использование помещений становится невозможным, а ремонт и восстановление - чаще всего нецелесообразным);

·полные разрушения при ?Рф? 50 кПа (разрушение всех элементов конструкции зданий. Использовать здание невозможно. Подвальные помещения при сильных и полных разрушениях могут сохраняться и после разбора завалов частично использоваться).

Гарантированная защита людей от ударной волны обеспечивается при укрытии их в убежищах. При отсутствии убежищ используются противорадиационные укрытия, подземные выработки, естественные укрытия и рельеф местности.

1.2 Световое излучение


Световое излучение - это поток лучистой энергии (ультрафиолетовые и инфракрасные лучи). Источником светового излучения является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров и воздуха. Световое излучение распространяется практически мгновенно и длится в зависимости от мощности ядерного боеприпаса (20-40 секунд). Однако не смотря на кратковременность своего воздействия эффективность действия светового излучения очень высока. Световое излучение составляет 35% от всей мощности ядерного взрыва. Энергия светового излучения поглощается поверхностями освещаемых тел, которые при этом нагреваются. Температура нагрева может быть такой, что поверхность объекта обуглится, оплавится, воспламенится или объект испарится. Яркость светового излучения намного сильнее солнечного, а образовавшийся огненный шар при ядерном взрыве виден на сотни километров. Так, когда 1 августа 1958 г. американцы взорвали над островом Джонстон мегатонный ядерный заряд, огненный шар поднялся на высоту 145 км и был виден с расстояния 1160 км.

Световое излучение может вызвать ожоги открытых участков тела, ослепление людей и животных, обугливание или возгорание различных материалов.

Основным параметром, определяющим поражающую способность светового излучения, является световой импульс: это количество световой энергии на единицу площади поверхности, измеряемое в Джоулях (Дж/м2).

Интенсивность светового излучения с увеличением расстояния уменьшается вследствие рассеивания и поглощения. Интенсивность светового излучения сильно зависит от метеорологических условий. Туман, дождь и снег ослабляют его интенсивность, и, наоборот, ясная и сухая погода благоприятствует возникновению пожаров и образованию ожогов.

Выделяются три основные зоны пожаров:

·Зона сплошных пожаров - 400-600 кДж/м2 (охватывает всю зону средних разрушений и часть зоны слабых разрушений).

·Зона отдельных пожаров - 100-200 кДж/м2. (охватывает часть зоны средних разрушений и всю зону слабых разрушений).

·Зона пожаров в завалах - 700-1700 кДж/м2. (охватывает всю зону полных разрушений и часть зоны сильных разрушений).

Поражение людей световым излучением выражается в появлении ожогов четырех степеней на кожном покрове и действием на глаза.

Действие светового излучения на кожу вызывает ожоги:

Ожоги первой степени выражаются в болезненности, покраснении и припухлости кожи. Они не представляют серьезной опасности и быстро вылечиваются без каких-либо последствий.

Ожоги второй степени (160-400 кДж/м2), образуются пузыри, заполненные прозрачной белковой жидкостью; при поражении значительных участков кожи человек может потерять на некоторое время трудоспособность и нуждается в специальном лечении.

Ожоги третьей степени (400-600 кДж/м2) характеризуются омертвлением мышечных тканей и кожи с частичным поражением росткового слоя.

Ожоги четвертой степени (? 600 кДж/м2): омертвление кожи более глубоких слоев тканей, возможна как временная, так и полная потеря зрения и т.д. Поражение ожогами третьей и четвертой степеней значительной части кожного покрова может привести к смертельному исходу.

Действие светового излучения на глаза:

·Временное ослепление - до 30 мин.

·Ожоги роговицы и век.

·Ожог глазного дна - слепота.

Защита от светового излучения более проста, чем от других поражающих факторов, поскольку любая непрозрачная преграда может служить защитой. Полностью защищают от светового излучения убежища, ПРУ, перерытые быстро возводимые защитные сооружения, подземные переходы, подвалы, погреба. Для защиты зданий сооружений пользуются покраской их в светлые тона. Для защиты людей используют ткани, пропитанные огнестойкими составами, и средства для защиты глаз (очки, световые затворы).


1.3 Радиация


Проникающая радиация не однородна. Классический опыт, позволяющий обнаружить сложный состав радиоактивного излучения, состоял в следующем. Препарат радия помещали на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходившее из канала излучение действовало сильное магнитное поле, линии индукции которого перпендикулярны лучу. Вся установка размещалась в вакууме. Под действием магнитного поля пучок распадался на три пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательный компонент излучения отклонялся магнитным полем гораздо сильнее, чем положительный. Третья составляющая не отклонялась магнитным полем. Положительно заряженный компонент получил название альфа-лучей, отрицательно заряженный - бета-лучей и нейтральный - гамма-лучей.

Поток ядерного взрыва представляет собой поток альфа, бета, гамма излучений и нейтронов. Поток нейтронов возникает вследствие деления ядер радиоактивных элементов. Альфа-лучи представляют собой поток альфа-частиц (дважды ионизированных атомов гелия), бета-лучи - поток быстрых электронов или позитронов, гамма-лучи - фотонное (электромагнитное) излучение, по своей природе и свойствам не отличающееся от рентгеновских лучей. При прохождении проникающей радиации через любую среду ее действие ослабляется. Излучение разных видов оказывают неодинаковое воздействие на организм, что объясняется разной их ионизирующей способностью.

Так альфа-излучения , представляющие собой тяжелые имеющие заряд частицы, обладают наибольшей ионизирующей способностью. Но их энергия, вследствие ионизации, быстро уменьшается. Поэтому альфа-излучения не способны проникнуть через наружный (роговой) слой кожи и не представляют опасности для человека до тех пор, пока вещества, испускающие альфа-частицы не попадут внутрь организма.

Бета-частицы на пути своего движения реже сталкиваются с нейтральными молекулами, поэтому их ионизирующая способность меньше, чем у альфа-излучения. Потеря же энергии при этом происходит медленнее и проникающая способность в тканях организма больше (1-2 см). Бета-излучения опасны для человека, особенно при попадании радиоактивных веществ на кожу или внутрь организма.

Гамма-излучение обладает сравнительно небольшой ионизирующей активностью, но в силу очень высокой проникающей способности представляет большую опасность для человека. Ослабляющее действие проникающей радиации принято характеризовать слоем половинного ослабления, т.е. толщиной материала, проходя через который проникающая радиация уменьшается в два раза.

Так, проникающую радиацию ослабляют в два раза следующие материалы: свинец - 1.8 см 4; грунт, кирпич - 14 см; сталь - 2.8 см 5; вода - 23 см; бетон - 10 см 6; дерево - 30 см.

Полностью защищают человека от воздействия проникающей радиации специальные защитные сооружения - убежища. Частично защищают ПРУ (подвалы домов, подземные переходы, пещеры, горные выработки) и быстровозводимые населением перекрытые защитные сооружения (щели). Самым надежным убежищем для населения являются станции метрополитена. Большую роль в защите населения от проникающей радиации играют противорадиационные препараты из АИ-2 - радиозащитные средства №1 и №2.

Источником проникающей радиации являются ядерные реакции деления и синтеза, протекающие в боеприпасах в момент взрыва, а также радиоактивный распад осколков деления ядерного горючего. Время действия проникающей радиации при взрыве ядерных боеприпасов не превышает нескольких секунд и определяется временем подъема облака взрыва. Поражающее действие проникающей радиации заключается в способности гамма излучения и нейтронов ионизировать атомы и молекулы, входящие в состав живых клеток, в результате чего нарушаются нормальный обмен веществ, жизнедеятельность клеток, органов и систем организма человека, что приводит к возникновению специфического заболевания - лучевой болезни . Степень поражения зависит от экспозиционной дозы излучения, времени, в течение которого эта доза получена, площади облучения тела, общего состояния организма. Также учитывают, что облучение может быть однократным (полученное за первые 4 суток) и многократным (превышающее 4 суток).

При однократном облучении организма человека в зависимости от полученной экспозиционной дозы различают 4 степени лучевой болезни.


Степень лучевой болезниДп (рад; Р) Характер протекания процессов после облучения1 степень (легкая) 100-200Скрытый период 3-6 недель, затем слабость, тошнота, повышение температуры, работоспособность сохраняется. В крови уменьшается содержание лейкоцитов. Лучевая болезнь первой степени излечима. 2 степень (средняя) 200-4002-3 дня тошнота и рвота, затем скрытый период 15-20 суток, выздоровление через 2-3 месяца; проявляется в более тяжелом недомогании, расстройстве функций нервной системы, головных болях, головокружениях, вначале часто бывает рвота, возможно повышение температуры тела; количество лейкоцитов в крови, особенно лимфоцитов, уменьшается более чем наполовину. Возможны смертельные исходы (до 20%). 3 степень (тяжелая) 400-600Скрытый период 5-10 суток, протекает тяжело, выздоровление через 3-6 месяцев. Отмечают тяжелое общее состояние, сильные головные боли, рвоту, иногда потерю сознания или резкое возбуждение, кровоизлияния в слизистые оболочки и кожу, некроз слизистых оболочек в области десен. Количество лейкоцитов, а затем эритроцитов и тромбоцитов резко уменьшается. Ввиду ослабления защитных сил организма появляются различные инфекционные осложнения. Без лечения болезнь в 20-70% случаев заканчивается смертью, чаще от инфекционных осложнений или от кровотечений. 4 степень (крайне тяжелая) ? 600Наиболее опасна, без лечения обычно заканчивается смертью в течение двух недель.

При взрыве в течение очень короткого времени, измеряемого несколькими миллионными долями секунды, высвобождается огромное количество внутриядерной энергии, значительная часть которой преобразуется в тепло. Температура в зоне взрыва повышается до десятков миллионов градусов. Вследствие этого продукты деления ядерного заряда, не прореагировавшая его часть и корпус боеприпаса мгновенно испаряются и превращаются в раскаленный сильно ионизированный газ. Нагретые продукты взрыва и массы воздуха образуют огненный шар (при воздушном взрыве) или огненную полусферу (при наземном взрыве). Сразу же после образования они быстро увеличиваются в размерах, достигая в диаметре нескольких километров. При наземном ядерном взрыве они с очень большой скоростью поднимаются вверх (иногда свыше 30 км), создавая мощный восходящий поток воздуха, который увлекает с собой десятки тысяч тонн грунта с поверхности земли. С увеличением мощности взрыва возрастают размеры и степень заражения местности в район взрыва и на следе радиоактивного облака. От количества и вида грунта, попавшего в облако ядерного взрыва, зависят количество, размеры и свойства радиоактивных частиц и, следовательно, их скорость выпадения и распределение по территории. Именно поэтому при наземных и подземных взрывах (с выбросом грунта) размеры и степень заражения местности значительно больше, чем при других взрывах. При взрыве на песчаном грунте уровни радиации на следе в среднем в 2,5 раза, а площадь следа в два раза больше чем при взрыве на связанном грунте. Начальная температура грибовидного облака очень высокая, поэтому основная масса попавшего в него грунта расплавляется, частично испаряется и перемешивается с радиоактивными веществами.

Природа последних не одинакова. Это и не прореагировавшая часть ядерного заряда (уран-235, уран-233, плутоний-239), и осколки деления, и химические элементы с наведенной активностью. Примерно за 10-12 минут радиоактивное облако поднимается на максимальную высоту, стабилизируется и начинает перемещаться горизонтально в направлении движения воздушных потоков. Грибовидное облако хорошо видно на большом расстоянии в течение десятков минут. Самые крупные частицы под действием силы тяжести выпадают из радиоактивного облака и столба пыли еще до момента, когда последние достигают предельной высоты и заражают местность в непосредственной близости от центра взрыва. Легкие частицы осаждаются медленнее и на значительных расстояниях от него. Так образуется след радиоактивного облака. Рельеф местности практически не влияет на размеры зон радиоактивного заражения. Однако он обусловливает неравномерное заражение отдельных участков внутри зон. Так, возвышенности и холмы сильнее заражаются с наветренной стороны, чем с подветренной. Продукты деления, выпадающие из облака взрыва, представляют собой смесь примерно 80 изотопов 35 химических элементов средней части периодической системы элементов Менделеева (от цинка №30 до гадолиния №64).

Почти все образующиеся ядра изотопов перегружены нейтронами, являются не стабильными и претерпевают бетта-распад с испусканием гамма-квантов. Первичные ядра осколков деления в последующем испытывают в среднем 3-4 распада и в итоге превращаются в стабильные изотопы. Таким образом, каждому первоначально образовавшемуся ядру (осколку) соответствует своя цепочка радиоактивных превращений. Люди и животные, попавшие в зараженную местность, подвергнутся внешнему облучению. Но опасность подстерегает и с другой стороны. Выпадающие на поверхность земли стронций-89 и стронций-90, цезий-137, иод-127 и иод-131 и другие радиоактивные изотопы включаются в общий круговорот веществ и проникают в живые организмы. Особую опасность представляют стронций-90 иод-131, а также плутоний и уран, которые способны концентрироваться в отдельных частях организма. Ученые установили, что стронций-89 и стронций-90 в основном концентрируются в костной ткани, йод - в щитовидной железе, плутоний и уран - в печени и т.д. Наибольшая степень заражения наблюдается на ближних участках следа. По мере удаления от центра взрыва вдоль оси следа степень заражения уменьшается. След радиоактивного облака условно делится на зоны умеренного, сильного и опасного заражения. В системе светового излучения активность радионуклидов измеряется в Беккерелях (Бк) и равна одному распаду в секунду. По мере увеличения времени, прошедшего после взрыва, активность осколков деления быстро падает (через 7 часов в 10 раз, через 49 часов в 100 раз). Зона А - умеренного заражения - от 40 до 400 бэр. Зона Б - сильного заражения - от 400 до 1200 бэр. Зона В - опасного заражения - от 1200 до 4000 бэр. Зона Г - чрезвычайно опасного заражения - от 4000 до 7000 бэр.

Зона умеренного заражения - самая большая по размерам. В ее пределах население, находящееся на открытой местности, может получить в первые сутки после взрыва легкие радиационные поражения.

В зоне сильного поражения опасность для людей и животных выше. Здесь возможны тяжелые радиационные поражения даже за несколько часов пребывания на открытой местности, особенно в первые сутки.

В зоне опасного заражения самые высокие уровни радиации. Даже на ее границе суммарная доза облучения за время полного распада радиоактивных веществ достигает 1200 р, а уровень радиации через 1 час после взрыва составляет 240 р/ч. В первые сутки после заражения суммарная доза на границе этой зоны составляет примерно 600 р, т.е. практически она смертельна. И хотя затем дозы облучения снижаются, на этой территории пребывание людей вне укрытий опасно очень продолжительное время.

Для защиты населения от радиоактивного заражения местности используются все имеющиеся защитные сооружения (убежища, ПРУ, подвалы многоэтажных домов, станции метрополитена). Эти защитные сооружения должны обладать достаточно высоким коэффициентом ослабления (Косл) - от 500 до 1000 и более раз, т.к. зоны радиоактивного заражения имеют высокие уровни радиации. В зонах радиоактивного заражения местности населению необходимо принимать радиозащитные препараты из АИ-2 (№1 и №2).


1.4 Электромагнитный импульс


Ядерные взрывы в атмосфере и в более высоких слоях приводят к образованию мощных электромагнитных полей с длинами волн от 1 до 1000 м и более. Эти поля в виду их кратковременного существования принято называть электромагнитным импульсом . Электромагнитный импульс возникает и в результате взрыва и на малых высотах, однако напряженность электромагнитного поля в этом случае быстро спадает по мере удаления от эпицентра. В случае же высотного взрыва, область действия электромагнитного импульса охватывает практически всю видимую из точки взрыва поверхность Земли. Поражающее действие электромагнитного импульса обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, в радиоэлектронной и радиотехнической аппаратуре. Электромагнитный импульс в указанной аппаратуре наводит электрические токи и напряжения, которые вызывают пробой изоляции, повреждение трансформаторов, сгорание разрядников, полупроводниковых приборов, перегорание плавких вставок. Наиболее подвержены воздействию электромагнитных импульсов линии связи, сигнализации и управления ракетных стартовых комплексов, командных пунктов. Защита от электромагнитных импульсов осуществляется экранированием линий управления и энергоснабжения, заменой плавких вставок (предохранителей) этих линий. Электромагнитный импульс составляет 1% от мощности ядерного боеприпаса.

2. Защитные сооружения


Защитные сооружения являются наиболее надежным средством защиты населения от аварий в районах АЭС, а также от ОМП и других современных средств нападения. Защитные сооружения в зависимости от защитных свойств подразделяются на убежища и противорадиационные укрытия (ПРУ). Кроме того, для защиты людей могут применяться простейшие укрытия.

. Убежища - это специальные сооружения, предназначенные для защиты укрывающихся в них людей от всех поражающих факторов ядерного взрыва, отравляющих веществ, бактериальных средств, а также от высоких температур и вредных газов, образующихся при пожарах.

Убежище состоит из основного и вспомогательных помещений. В основном помещении, предназначенном для размещения укрываемых, оборудуются двух - или трехъярусные нары-скамейки для сидения и полки для лежания. Вспомогательные помещения убежища - это санитарный узел, фильтровентиляционная камера, а в сооружениях большой вместимости - медицинская комната, кладовая для продуктов, помещения для артезианской скважины и дизельной электростанции. В убежище устраивается, как правило, не менее двух входов; в убежищах малой вместимости - вход и аварийный выход. Во встроенных убежищах входы могут делаться с лестничных клеток или непосредственно с улицы. Аварийный выход оборудуется в виде подземной галереи, оканчивающейся шахтой с оголовком или люком на незаваливаемой территории. Наружная дверь делается защитно-герметической, внутренняя - герметической. Между ними располагается тамбур. В сооружениях большой вместимости (более 300 человек) при одном из входов оборудуется тамбур-шлюз, который с наружной и внутренней сторон закрывается защитно-герметическими дверями, что обеспечивает возможность выхода из убежища без нарушения защитных свойств входа. Система воздухоснабжения, как правило, работает на двух режимах: чистой вентиляции (очистка воздуха от пыли) и фильтровентиляции. В убежищах, расположенных в пожароопасных районах, дополнительно предусматривается режим полной изоляции с регенерацией воздуха внутри убежища. Системы энерговодоснабжения, отопления и канализации убежищ связаны с соответствующими внешними сетями. На случай их повреждения в убежище имеются переносные электрические фонари, резервуары для хранения аварийного запаса воды, а также емкости для сбора нечистот. Отопление убежищ предусматривается от общей отопительной сети. В помещениях убежища размещается, кроме того, комплект средств для ведения разведки, защитная одежда, средства тушения пожара, аварийный запас инструмента.

. Противорадиационные укрытия (ПРУ) обеспечивают защиту людей от ионизирующих излучений при радиоактивном заражении (загрязнении) местности. Кроме того, они защищают от светового излучения, проникающей радиации (в том числе и от нейтронного потока) и частично от ударной волны, а также от непосредственного попадания на кожу и одежду людей радиоактивных, отравляющих веществ и бактериальных средств. Устраиваются ПРУ прежде всего в подвальных этажах зданий и сооружений. В ряде случаев возможно сооружение отдельно стоящих быстровозводимых ПРУ, для чего используют промышленные (сборные железобетонные элементы, кирпич, прокат) или местные (лесоматериалы, камни, хворост и т.п.) строительные материалы. Под ПРУ приспосабливают все пригодные для этой цели заглубленные помещения: подвалы, погреба, овощехранилища, подземные выработки и пещеры, а также помещения в наземных зданиях, имеющих стены из материалов, обладающих необходимыми защитными свойствами. Для повышения защитных свойств в помещении заделывают оконные и лишние дверные проемы, насыпают слой грунта на перекрытие и делают, если нужно, грунтовую подсыпку снаружи у стен, выступающих выше поверхности земли. Герметизация помещений достигается тщательной заделкой трещин, щелей и отверстий в стенах и потолке, в местах примыкания оконных и дверных проемов, ввода отопительных и водопроводных труб; подгонкой дверей и обивкой их войлоком с уплотнением притвора валиком из войлока или другой мягкой плотной ткани. Укрытия вместимостью до 30 человек проветриваются естественной вентиляцией через приточный и вытяжной короба. Для создания тяги вытяжной короб устанавливают на 1,5-2 м выше приточного. На наружных выводах вентиляционных коробов делают козырьки, а на входах в помещение - плотно пригнанные заслонки, которые закрывают на время выпадения радиоактивных осадков. Внутреннее оборудование укрытий аналогично оборудованию убежища. В приспосабливаемых под укрытия помещениях, не оборудованных водопроводом и канализацией, устанавливают бачки для воды из расчета 3-4 л на одного человека в сутки, а туалет снабжают выносной тарой или люфт-клозетом с выгребной ямой. Кроме того, в укрытии устанавливают нары (скамьи), стеллажи или лари для продовольствия. Освещение осуществляется от наружной электросети или переносными электрическими фонарями. Защитные свойства ПРУ от воздействия радиоактивных излучений оцениваются коэффициентом защиты (ослабления радиации), который показывает, во сколько раз доза радиации на открытой местности больше дозы радиации в укрытии, т.е. во сколько раз ПРУ ослабляют действие радиации, а следовательно, дозу облучения людей.

Дооборудование подвальных этажей и внутренних помещений зданий повышает их защитные свойства в несколько раз. Так, коэффициент защиты оборудованных подвалов деревянных домов повышается примерно до 100, каменных домов - до 800 - 1000. Необорудованные погреба ослабляют радиацию в 7 - 12 раз, а оборудованные - в 350-400 раз.

К простейшим укрытиям относятся щели открытые и перекрытые. Щели строятся самим населением с использованием подручных местных материалов. Простейшие укрытия обладают надежными защитными свойствами. Так, открытая щель в 1,5-2 раза уменьшает вероятность поражения ударной волной, световым излучением и проникающей радиацией, в 2-3 раза снижает возможность облучения в зоне радиоактивного заражения. Перекрытая щель защищает от светового излучения полностью, от ударной волны - в 2,5-3 раза, от проникающей радиации и радиоактивного излучения - в 200-300 раз.

Щель первоначально устраивают открытой. Она представляет собой зигзагообразную траншею в виде нескольких прямолинейных участков длиной не более 15 м. Глубина ее 1,8-2 м, ширина по верху 1,1-1,2 м и по дну до 0,8 м. Длина щели определяется из расчета 0,5-0,6 м на одного человека. Нормальная вместимость щели 10-15 человек, наибольшая-50 человек. Строительство щели начинают с разбивки и трассировки - обозначения ее плана на местности. Вначале провешивается базисная линия, на ней откладывается общая длина щели. Затем влево и вправо откладываются половинные размеры ширины щели по верху. В местах изломов забиваются колышки, между ними натягиваются трассировочные шнуры и отрываются канавки глубиной 5-7 см. Рытье начинают не по всей ширине, а несколько отступив внутрь от линии трассировки. По мере углубления постепенно подравнивают откосы щели и доводят ее до требуемых размеров. В дальнейшем стенки щели укрепляют досками, жердями, камышом или другими подручными материалами. Затем щель перекрывают бревнами, шпалами или малогабаритными железобетонными плитами. Поверх покрытия настилают слой гидроизоляции, применяя толь, рубероид, хлорвиниловую пленку, или укладывают слой мятой глины, а затем слой грунта толщиной 50-60 см. Вход делают с одной или с двух сторон под прямым углом к щели и оборудуют герметической дверью и тамбуром, отделяя занавесом из плотной ткани помещение для укрываемых. Для вентиляции устанавливают вытяжной короб. Вдоль пола прорывают дренажную канавку с водосборным колодцем, расположенным при входе в щель.

Заключение


Ядерное оружие - самое опасное из всех известных на сегодняшний день средств массового поражения. И, несмотря на это, его количества с каждым годом всё увеличиваются. Это обязывает каждого человека знать способы защиты, чтобы предотвратить смерть и, может быть, даже не одну.

Для того, чтобы защититься, необходимо иметь хотя бы малейшее представление о ядерном оружии и его действии. Именно в этом и заключается основная задача гражданской обороны: дать человеку знания для того, чтобы он мог сам себя защитить (причем это касается не только ядерного оружия, а вообще всех опасных для жизни людей ситуаций).

К поражающим факторам относятся:

) Ударная волна. Характеристика: скоростной напор, резкое повышение давления. Последствия: разрушения механическим воздействием ударной волны и поражения людей и животных вторичными факторами. Защита: использование убежищ, простейших укрытий и защитных свойств местности.

) Световое излучение. Характеристика: очень высокая температура, ослепляющая вспышка. Последствия: пожары и ожоги кожи людей. Защита: использование убежищ, простейших укрытий и защитных свойств местности.

) Радиация. Проникающая радиация. Характеристика: альфа, бета, гамма излучения. Последствия: поражение живых клеток организма, лучевая болезнь. Защита: использование убежищ, противорадиационных укрытий простейших укрытий и защитных свойств местности.

Радиоактивное заражение. Характеристика: большая площадь поражения, длительность сохранения поражающего действия, трудности обнаружения радиоактивных веществ, не имеющих цвета, запаха и других внешних признаков. Последствия: лучевая болезнь, внутреннее поражение радиоактивными веществами. Защита: применение убежищ, противорадиационных укрытий, простейших укрытий, защитных свойств местности и средств индивидуальной защиты.

) Электромагнитный импульс. Характеристика: кратковременное электромагнитное поле. Последствия: возникновение коротких замыканий, пожаров, действие вторичных факторов на человека (ожоги). Защита: хорошо изолировать линии, проводящие ток.

Защитными сооружениями служат убежища, противорадиационные укрытия (ПРУ), а также простейшие укрытия.


Список литературы


1.Иванюков М.И., Алексеев В.А. Основы безопасности жизнедеятельности: Учебное пособие - М.: Издательско-торговая корпорация "Дашков и К", 2007;

2.Матвеев А.В., Коваленко А.И. Основы защиты населения и территорий в чрезвычайных ситуациях: Учебное пособие - С-Пб, ГУАП, 2007;

.Афанасьев Ю.Г., Овчаренко А.Г. и др. Безопасность жизнедеятельности. - Бийск: Изд-во АГТУ, 2006;

.Кукин П.П., Лапин В.Л. и др. Безопасность жизнедеятельности: Учебное пособие для вузов. - М.: Высшая школа, 2003;

Поражающие факторы ядерного оружия

Ядерным оружием называется оружие, поражающее действие которого основано на использовании внутриядерной энергии, выделяющейся при ядерном взрыве. Это оружие включает различные ядерные боеприпасы (боевые головные части ракет и торпед, авиационные и глубинные бомбы, артиллерийские снаряды и мины), снаряженные ядерными зарядными устройствами, средства управления ими и доставки их к цели.

Основной частью ядерного боеприпаса является ядерный заряд, содержащий ядерное взрывчатое вещество (ЯВВ) – уран‑235 или плутоний‑239. Цепная ядерная реакция может развиваться только при наличии критической массы делящегося вещества. До взрыва ЯВВ в одном боеприпасе должно быть разделено на отдельные части, каждая из которых по массе должна быть меньше критической.

Мощность ядерного взрыва принято характеризовать тротиловым эквивалентом.

Центром ядерного взрыва называется точка, в которой происходит вспышка ядерной реакции. По положению центра относительно земли или воды различают ядерные взрывы: космические, высотные, воздушные, наземные, подземные, надводные, подводные.

Воздушным ядерным взрывом называется взрыв, произведенный в воздухе на такой высоте, при которой огненный шар не касается поверхности земли. Он сопровождается кратковременной ослепительной вспышкой, видимый даже в солнечный день на расстоянии сотен километров. Воздушный ядерный взрыв используется для разрушения зданий, сооружений и поражения людей. Он вызывает поражение ударной волной, световым излучением и проникающей радиацией. Радиоактивное заражение местности при воздушном взрыве практически отсутствует, так как радиоактивные продукты взрыва поднимаются вместе с огненным шаром на очень большую высоту, не смешиваясь с частицами грунта.

Наземным ядерным взрывом называется взрыв на поверхности земли или на такой высоте от нее, когда светящаяся область касается грунта и имеет, как правило, форму усеченной сферы. Увеличиваясь в размерах и остывая, огненный шар отрывается от земли, темнеет и превращается в клубящееся облако, которое увлекая за собой столб пыли, через несколько минут приобретает характерную грибовидную форму. При наземном ядерном взрыве в воздух поднимается большое количество грунта. Наземный взрыв применяется для разрушения прочных наземных сооружений.

Надводным ядерным взрывом называется взрыв на поверхности воды или на высоте, при которой светящаяся область касается поверхности воды. Применяется для поражения надводных плавсредств. Поражающими факторами при надводном взрыве являются воздушная волна и волны, образующиеся на поверхности воды. Действие светового излучения и проникающей радиации значительно ослабляется в результате экранирующего действия большой массы водяного пара.

В облако взрыва вовлекается большое количество воды и пара, образовавшегося под действием светового излучения. После остывания облака пар конденсируется и капли воды выпадают в виде радиоактивного дождя, сильно заражая воду и местность в районе взрыва и по направлению движения облака.

Подземным ядерным взрывом называется взрыв, произведенный ниже поверхности земли. При подземном взрыве огромное количество грунта выбрасывается на высоту нескольких километров, а в месте взрыва образуется глубокая воронка, размеры которой больше, чем при наземном взрыве. Подземные взрывы используются для поражения заглубленных сооружений. Основным поражающим фактором подземного ядерного взрыва является волна сжатия, распространяющаяся в грунте. Подземный взрыв вызывает сильное заражение местности в районе взрыва и по следу движения облака.

Подводным ядерным взрывом называется взрыв, произведенный под водой на глубине, которая колеблется в широких пределах. При подводном ядерном взрыве поднимается полый водяной столб с большим облаком в верхней части. Диаметр водяного столба достигает нескольких сотен метров, а высота - нескольких километров и зависят от мощности и глубины взрыва. Основным поражающим фактором подводного взрыва является ударная волна в воде, скорость распространения которой равна скорости распространения звука в воде, т.е. примерно 1500 м/сек. Ударная волна в воде разрушает подводные части кораблей и различных гидротехнических сооружений. Световое излучение и проникающая радиация поглощаются толщей воды и водяными парами. Подводный взрыв вызывает сильное радиоактивное заражение воды. При взрыве вблизи от берега зараженная вода выбрасывается базисной волной на побережье, затопляет его и вызывает сильное заражение объектов, расположенных на берегу.

Одной из разновидностей ядерного оружия является нейтронный боеприпас . Это малогабаритный термоядерный заряд мощностью не более 10 тыс. т, у которого основная доля энергии выделяется за счет реакций синтеза дейтерия и трития, а количество энергии, получаемой в результате деления тяжелых ядер в детонаторе, минимально, но достаточно для начала реакции синтеза. Нейтронная составляющая при проникающей радиации такого малого по мощности ядерного взрыва и будет оказывать основное поражающее действие на людей.

При взрыве ядерного боеприпаса за миллионные доли секунды выделяется колоссальное количество энергии. Температура повышается до нескольких миллионов градусов, а давление достигает миллиардов атмосфер. Высокие температура и давление вызывают световое излучение и мощную ударную волну. Наряду с этим взрыв ядерного боеприпаса сопровождается испусканием проникающей радиации, состоящей из потока нейтронов и гамма‑квантов. Облако взрыва содержит огромное количество радиоактивных продуктов – осколков деления ядерного взрывчатого вещества, которые выпадают по пути движения облака, в результате чего происходит радиоактивное заражение местности, воздуха и объектов. Неравномерное движение электрических зарядов в воздухе, возникающее под действием ионизирующих излучений, приводит к образованию электромагнитного импульса.

Основными поражающими факторами ядерного взрыва являются:

1) ударная волна – 50% энергии взрыва;

2) световое излучение – 30–35% энергии взрыва;

3) проникающая радиация – 8–10% энергии взрыва;

4) радиоактивное заражение – 3–5% энергии взрыва;

5) электромагнитный импульс – 0,5–1% энергии взрыва.

Ударная волна ядерного взрыва – один из основных поражающих факторов. В зависимости от того, в какой среде возникает и распространяется ударная волна – в воздухе, воде или грунте, ее называют соответственно воздушной волной, ударной волной в воде и сейсмовзрывной волной (в грунте). Воздушной ударной волной называется область резкого сжатия воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.



Ударная волна вызывает у человека открытые и закрытые травмы различной степени тяжести. Большую опасность для человека представляет и косвенное воздействие ударной волны. Разрушая здания, убежища и укрытия, она может послужить причиной тяжелых травм. Основной способ защиты людей и техники от поражения ударной волны заключается в изоляции их от действия избыточного давления и скоростного напора. Для этого используются укрытия и убежища различного типа и складки местности.

Световое излучение ядерного взрыва представляет собой электромагнитное излучение, включающее видимую ультрафиолетовую и инфракрасную области спектра. Энергия светового излучения поглощается поверхностями освещаемых тел, которые при этом нагреваются. Температура нагрева может быть такой, что поверхность объекта обуглится, оплавится или воспламенится. Световое излучение может вызывать ожоги открытых участков тела человека, а в темное время суток – временное ослепление. Источником светового излучения является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров конструкционных материалов боеприпаса и воздуха, а при наземных взрывах – и испарившегося грунта. Размеры светящейся области и время ее свечения зависят от мощности, а форма – от вида взрыва.

Степень воздействия светового излучения на различные здания, сооружения, технику зависит от свойств их конструкционных материалов. Оплавление, обугливание, воспламенение материалов в одном месте могут привести к распространению огня, массовым пожарам.

Защита от светового излучения более проста, чем от других поражающих факторов, поскольку любая непрозрачная преграда, любой объект, создающий тень, могут служить защитой.

Проникающая радиация представляет собой поток гамма‑излучения и нейтронов, испускаемых из зоны ядерного взрыва. Гамма‑излучение и нейтронное излучение различны по своим физическим свойствам. Общим для них является то, что они могут распространяться в воздухе во все стороны на расстояние до 2,5–3 км. Проходя через биологическую ткань, гамма– и нейтронное излучения ионизируют атомы и молекулы, входящие в состав живых клеток, в результате чего нарушается нормальный обмен веществ и изменяется характер жизнедеятельности клеток, отдельных органов и систем организма, что приводит к возникновению специфического заболевания – лучевой болезни.

Источником проникающей радиации являются ядерные реакции деления и синтеза, протекающие в боеприпасах в момент взрыва, а также радиоактивный распад осколков деления.

Поражающее действие проникающей радиации на людей вызывается облучением, которое оказывает вредное биологическое действие на живые клетки организма. Проходя через живую ткань проникающая радиация ионизирует атомы и молекулы, входящие в состав клеток. Это приводит к нарушению деятельности клеток, отдельных органов и систем организма. Поражающее действие проникающей радиации зависит от величины дозы облучения и времени, в течение которого эта доза получена. Доза, полученная за короткий промежуток времени, вызывает более сильное поражение, чем доза, равная по величине, но полученная за большее время. Это объясняется тем, что организм с течением времени способен восстанавливать часть пораженных радиацией клеток. Скорость восстановления определяется периодом полувосстановления, равным для людей 28-30 суток. Доза радиоактивного облучения, полученная за первые четверо суток с момента облучения, называется однократной, а за больший период времени - многократной. На военное время доза радиации, не приводящая к снижению работоспособности и боеспособности личного состава формирований принята: однократная (в течение первых четырех суток) 50 Р, многократная в течение первых 10-30 суток – 100 Р, в течение трех месяцев – 200 Р, в течение года – 300 Р.