Баллистика оружия внешняя и внутренняя. Основы внутренней и внешней баллистики

ОСНОВЫ ВНУТРЕННЕЙ И ВНЕШНЕЙ БАЛЛИСТИКИ

Баллистика (нем. Ballistik, от греч. ballo - бросаю), наука о движении артиллерийских снарядов, пуль, мин, авиабомб, активнореактивных и реактивных снарядов, гарпунов и т.п.

Баллистика – военно-техническая наука, основывающаяся на комплексе физико-математических дисциплин. Различают внутреннюю и внешнюю баллистику.

Возникновение баллистики как науки относится к XVI в. Первыми трудами по баллистике являются книги итальянца Н. Тартальи «Новая наука» (1537) и «Вопросы и открытия, относящиеся к артиллерийской стрельбе» (1546). В XVII в. фундаментальные принципы внешней баллистики были установлены Г. Галилеем, разработавшим параболическую теорию движения снарядов, итальянцем Э. Торричелли и французом М. Мерсенном, который предложил назвать науку о движении снарядов баллистикой (1644). И. Ньютон провёл первые исследования о движении снаряда с учётом сопротивления воздуха – «Математические начала натуральной философии» (1687). В XVII – XVIII в в. исследованием движения снарядов занимались: голландец Х. Гюйгенс, француз П. Вариньон, швейцарец Д. Бернулли, англичанин Б. Робинс, русский учёный Л. Эйлер и др. Экспериментальные и теоретические основы внутренней баллистики заложены в XVIII в. в трудах Робинса, Ч. Хеттона, Бернулли и др. В XIX в. были установлены законы сопротивления воздуха (законы Н.В. Маиевского, Н.А. Забудского, Гаврский закон, закон А.Ф. Сиаччи). В начале 20 в. дано точное решение основной задачи внутренней баллистики – работы Н.Ф. Дроздова (1903, 1910), исследовались вопросы горения пороха в неизменном объёме – работы И.П. Граве (1904) и давления пороховых газов в канале ствола – работы Н.А. Забудского (1904, 1914), а также француза П. Шарбонье и итальянца Д. Бианки. В СССР большой вклад в дальнейшее развитие в баллистики внесён учёными Комиссии особых артиллерийских опытов (КОСЛРТОП) в 1918-1926. В этот период В.М. Трофимовым, А.Н. Крыловым, Д.А. Вентцелем, В.В. Мечниковым, Г.В. Оппоковым, Б.Н. Окуневым и др. выполнен ряд работ по совершенствованию методов расчёта траектории, разработке теории поправок и по изучению вращательного движения снаряда. Исследования Н.Е. Жуковского и С.А. Чаплыгина по аэродинамике артиллерийских снарядов легли в основу работ Е.А. Беркалова и др. по совершенствованию формы снарядов и увеличению дальности их полёта. В.С. Пугачев впервые решил общую задачу о движении артиллерийского снаряда. Важную роль в решении проблем внутренней баллистики играли исследования Трофимова, Дроздова и И.П. Граве, написавшего в 1932-1938 наиболее полный курс теоретической внутренней баллистики.



Значительный вклад в развитие методов оценки и баллистического исследования артиллерийских систем и в решение специальных задач внутренней баллистики внесли М.Е. Серебряков, В.Е. Слухоцкий, Б.Н. Окунев, а из иностранных авторов – П. Шарбонье, Ж. Сюго и др.

В период Великой Отечественной войны 1941-1945 под руководством С.А. Христиановича проведены теоретические и экспериментальные работы по повышению кучности реактивных снарядов. В послевоенное время эти работы продолжались; исследовались также вопросы повышения начальных скоростей снарядов, установления новых законов сопротивления воздуха, повышения живучести ствола, развития методов баллистического проектирования. Значительное развитие получили работы по исследованию периода последействия (В.Е. Слухоцкий и др.) и развитию методов Б. для решения специальных задач (гладкоствольные системы, активнореактивные снаряды и др.), задач внешней и внутренней Б. применительно к реактивным снарядам, дальнейшего совершенствования методики баллистических исследований, связанных с использованием ЭВМ.

Сведения внутренней баллистики

Внутренняя баллистика - это наука, занимающаяся изучением процессов, которые происходят при выстреле, и в особенности при движении пули (гранаты) по каналу ствола.

Сведения внешней баллистики

Внешняя баллистика - это наука, изучающая движение пули (гранаты) после прекращения действия на нее пороховых газов. Вылетев из канала ствола под действием пороховых газов, пуля (граната) движется по инерции. Граната, имеющая реактивный двигатель, движется по инерции после истечения газов из реактивного двигателя.

Полет пули в воздухе

Вылетев из канала ствола, пуля движется по инерции и подвергается действию двух сил силы тяжести и силы сопротивления воздуха



Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. На преодоление силы сопротивления воздуха затрачивается часть энергии пули

Сила сопротивления воздуха вызывается тремя основными причинами трением воздуха, образованием завихрений образованием бал­листической волны (рис. 4)

Пуля при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей повышается плотность воздуха и образуются звуковые волны, образуется баллистическая волна Сила сопротивления воздуха зависит от формы пули, скорости полета, калибра, плотности воздуха

Рис. 4. Образование силы сопротивления воздуха

Для того чтобы пуля не опрокидывалась под действием силы сопро­тивления воздуха, ей придают с помощью нарезов в канале ствола быстрое вращательное движение. Таким образом, в результате действия на пулю силы тяжести и силы сопротивления воздуха она будет двигаться не равномерно и прямолинейно, а опишет кривую линию - траекторию.

Их при стрельбе

На полет пули в воздухе оказывают влияние метеорологические, баллистические и топографические условия

При пользовании таблиц необходимо помнить, что данные траектории в них соответствуют нормальным условиям стрельбы.

За нормальные (табличные) условия приняты следующие.

Метеорологические условия:

· атмосферное давление на горизонте оружия 750 мм рт. ст.;

· температура воздуха на горизонте оружия +15 градусов Цельсия;

· относительная влажность воздуха 50% (относительной влажностью называется отношение количества водяных паров, содержащихся в воздухе, к наибольшему количеству водяных паров, которое может содержаться в воздухе при данной температуре),

· ветер отсутствует (атмосфера неподвижна).

Рассмотрим, какие поправки дальности на внешние условия стрельбы приводятся в таблицах стрельбы для стрелкового оружия по наземным целям.

Табличные поправки дальности при стрельбе из стрелкового оружия по наземным целям, м
Изменение условий стрельбы от табличных Вид патрона Дальность стрельбы, м
Температуры воздуха и заряда на 10°С Винтовочный
Обр. 1943 г. - -
Давления воздуха на 10 мм рт. ст. Винтовочный
Обр. 1943 г. - -
Начальной скорости на 10 м/сек Винтовочный
Обр. 1943 г. - -
На продольный ветер со скоростью 10 м/сек Винтовочный
Обр. 1943 г. - -

Из таблицы видно, что наибольшее влияние на изменение дальности полета пуль имеют два фактора: изменение температуры и падение начальной скорости. Изменения дальности, вызываемые отклонением давления воздуха и продольным ветром, даже на расстояния 600-800 м практического значения не имеют, и их можно не учитывать.

Боковой ветер вызывает отклонение пуль от плоскости стрельбы в ту сторону, куда он дует (см. рис. 11).

Скорость ветра определяется с достаточной точностью по простым признакам: при слабом ветре (2-3 м/сек) носовой платок и флаг колышутся и слегка развеваются; при умеренном ветре (4-6 м/сек) флаг держится развернутым, а платок развевается; при сильном ветре (8-12 м/сек) флаг с шумом развевается, платок рвется из рук и т. д. (см. рис.12).

Рис. 11 Влияние направления ветра на полет пули:

А – боковое отклонение пули при ветре, дующем под углом 90° к плоскости стрельбы;

А1 – боковое отклонение пули при ветре, дующем под углом 30° к плоскости стрельбы: А1=А*sin30°=A*0,5

А2 – боковое отклонение пули при ветре, дующем под углом 45° к плоскости стрельбы: А1=А*sin45°=A*0,7

В наставлениях по стрелковому делу приведены таблицы поправок на боковой умеренный ветер (4 м/сек), дующий перпендикулярно к плоскости стрельбы.

При отклонении условий стрельбы от нормальных может возникнуть необходимость определения и учета поправок дальности и направления стрельбы, для чего необходимо руководствоваться правилами в наставлениях по стрелковому делу

Рис. 12 Определение скорости ветра по местным предметам

Таким образом, дав определение прямому выстрелу, разобрав его практическое значение при стрельбе, а также влияние условий стрельбы на полет пули, необходимо умело применять эти знания при выполнении упражнений из табельного оружия как на практических занятиях по огневой подготовке, так и при выполнении служебно-оперативных задач.

Явление рассеивания

При стрельбе из одного и того же оружия, при самом тщательном соблюдении точности и однообразности производства выстрелов, каждая пуля вследствие ряда случайных причин описывает свою траекторию и имеет свою точку падения (точку встречи), не совпадающую с другими, вследствие чего происходит разбрасывание пуль.

Явление разбрасывания пуль при стрельбе из одного и того же оружия в практически одинаковых условиях называется естественным рассеиванием пуль или рассеиванием траектории. Совокупность траекторий пуль, полученных вследствие их естественного рассеивания, называется снопом траекторий.

Точка пересечения средней траектории с поверхностью цели (преграды) называется средней точкой попадания или центром рассеивания

Площадь рассеивания обычно имеет форму эллипса. При стрельбе из стрелкового оружия на близкие расстояния площадь рассеивания в вертикальной плоскости может иметь форму круга (рис13.).

Взаимноперпендикулярные линии, проведенные через центр рассеивания (среднюю точку попадания) так, чтобы одна из них совпала с направлением стрельбы, называются осями рассеивания.

Кратчайшие расстояния от точек встречи (пробоин) до осей рассеивания называются отклонениями.

Рис. 13 Сноп траектории, площадь рассеивания, оси рассеивания:

а – на вертикальной плоскости, б – на горизонтальной плоскости, средняятраектория обозначена красной линией, С – средняя точка попадания, ВВ 1 – осьрассеивания по высоте, ББ 1 , – ось рассеивания по боковому направлению, dd 1 , – ось рассеивания по дальности попадания. Площадь, на которой располагаются точки встречи (пробоины) пуль, полученные при пересечении снопа траекторий с какой-либо плоскостью, называется площадью рассеивания.

Причины рассеивания

Причины, вызывающие рассеивание пуль, могут быть сведены в три группы:

· причины, вызывающие разнообразие начальных скоростей;

· причины, вызывающие разнообразие углов бросания и направления стрельбы;

· причины, вызывающие разнообразие условий полета пули. Причинами, вызывающими разнообразие начальных скоростей пуль, являются:

· разнообразие в весе пороховых зарядов и пуль, в форме и размерах пуль и гильз, в качестве пороха, плотности заряжания и т. д. как результат неточностей (допусков) при их изготовлении;

· разнообразие температур зарядов, зависящее от температуры воздуха и неодинакового времени нахождения патрона в нагретом при стрельбе стволе;

· разнообразие в степени нагрева и качественном состоянии ствола.

Эти причины ведут к колебанию в начальных скоростях, а, следовательно, и в дальностях полета пуль, т. е. приводят к рассеиванию пуль по дальности (высоте) и зависят, в основном, от боеприпасов и оружия.

Причинами, вызывающими разнообразие углов бросания и направления стрельбы, являются:

· разнообразие в горизонтальной и вертикальной наводке оружия (ошибки в прицеливании);

· разнообразие углов вылета и боковых смещений оружия, получаемое в результате неоднообразной изготовки к стрельбе, неустойчивого и неоднообразного удержания автоматического оружия, особенно во время стрельбы очередями, неправильного использования упоров и неплавного спуска курка;

· угловые колебания ствола при стрельбе автоматическим огнем, возникающие вследствие движения и ударов подвижных частей оружия.

Эти причины приводят к рассеиванию пуль по боковому направлению и по дальности (высоте), оказывают наибольшее влияние на величину площади рассеивания и, в основном, зависят от выучки стреляющего.

Причинами, вызывающими разнообразие условий полета пуль, являются:

· разнообразие в атмосферных условиях, особенно в направлении и скорости ветра между выстрелами (очередями);

· разнообразие в весе, форме и размерах пуль (гранат), приводящее к изменению величины сопротивления воздуха,

Эти причины приводят к увеличению рассеивания пуль по боковому направлению и по дальности (высоте) и, в основном, зависят от внешних условий стрельбы и боеприпасов.

При каждом выстреле в разном сочетании действуют все три группы причин.

Это приводит к тому, что полет каждой пули происходит по траектории отличной от траектории других пуль. Полностью устранить причины, вызывающие рассеивание, следовательно, устранить и само рассеивание – невозможно. Однако зная причины, от которых зависит рассеивание, можно уменьшить влияние каждой из них и тем самым уменьшить рассеивание, или, как принято говорить, повысить кучность стрельбы.

Уменьшение рассеивания пуль достигается отличной выучкой стреляющего, тщательной подготовкой оружия и боеприпасов к стрельбе, умелым применением правил стрельбы, правильной изготовкой к стрельбе, однообразной прикладкой, точной наводкой (прицеливанием), плавным спуском курка, устойчивым и однообразным удержанием оружия при стрельбе, а также надлежащим уходом за оружием и боеприпасами.

Закон рассеивания

При большом числе выстрелов (более 20) в расположении точек встречи на площади рассеивания наблюдается определенная закономерность. Рассеивание пуль подчиняется нормальному закону случайных ошибок, который в отношении к рассеиванию пуль называется законом рассеивания.

Этот закон характеризуется следующими тремя положениями (рис.14):

1. Точки встречи (пробоины) на площади рассеивания располагаютсянеравномерно – гуще к центру рассеивания и реже к краям площади рассеивания.

2. На площади рассеивания можно определить точку, являющуюся центром рассеивания (среднюю точку попадания), относительно которой распределение точек встречи (пробоин)симметрично: число точек встречи по обе стороны от осей рассеивания, заключающихся в равных по абсолютной величине пределах (полосах), одинаково, и каждому отклонению от оси рассеивания в одну сторону отвечает такое же по величине отклонение в противоположную сторону.

3. Точки встречи (пробоины) в каждом частном случае занимаютне беспредельную, а ограниченную площадь.

Таким образом, закон рассеивания в общем виде можно сформулировать следующим образом:при достаточно большом числе выстрелов, произведенных в практически одинаковых условиях, рассеивание пуль (гранат) неравномерно, симметрично и небеспредельно.

Рис.14. Закономерность рассевания

Действительность стрельбы

При стрельбе из стрелкового оружия и гранатометов в зависимости от характера цели, расстояния до нее, способа ведения огня, вида боеприпасов и других факторов, могут быть достигнуты различные результаты. Для выбора наиболее эффективного в данных условиях способа выполнения огневой задачи необходимо произвести оценку стрельбы, т. е. определить ее действительность

Действительностью стрельбы называется степень соответствия результатов стрельбы поставленной огневой задаче. Она может быть определена расчетным путем или по результатам опытных стрельб.

Для оценки возможных результатов стрельбы из стрелкового оружия и гранатометов обычно принимаются следующие показатели: вероятность поражения одиночной цели (состоящей из одной фигуры); математическое ожидание числа (процента) пораженных фигур в групповой цели (состоящей из нескольких фигур); математическое ожидание числа попаданий; средний ожидаемый расход боеприпасов для достижения необходимой надежности стрельбы; средний ожидаемый расход времени на выполнение огневой задачи.

Кроме того, при оценке действительности стрельбы учитывается степень убойного и пробивного действия пули.

Убойность пули характеризуется ее энергией в момент встречи с целью. Для нанесения поражения человеку (вывода его из строя) достаточна энергия, равная 10 кг/м. Пуля стрелкового оружия сохраняет убойность практически до предельной дальности стрельбы.

Пробивное действие пули характеризуется ее способностью пробить преграду (укрытие) определенной плотности и толщины. Пробивное действие пули указывается в наставлениях по стрелковому делу отдельно для каждого вида оружия. Кумулятивная граната из гранатомета пробивает броню любого современного танка, САУ, бронетранспортера.

Для расчета показателей действительности стрельбы необходимо знать характеристики рассеивания пуль (гранат), ошибки в подготовке стрельбы, а также способы определения вероятности попадания в цель и вероятности поражения целей.

Вероятность поражения цели

При стрельбе из стрелкового оружия по одиночным живым целям и из гранатометов по одиночным бронированным целям одно попадание дает поражение цели Поэтому, под вероятностью поражения одиночной цели понимается вероятность получения хотя бы одного попадания при заданном числе выстрелов.

Вероятность поражения цели при одном выстреле (Р,) численно равняется вероятности попадания в цель (р). Расчет вероятности поражения цели при этом условии сводится к определению вероятности попадания в цель.

Вероятность поражения цели (Р,) при нескольких одиночных выстрелах, одной очередью или несколькими очередями, когда вероятность попадания для всех выстрелов одинаковая, равна единице минус вероятность промаха в степени, равной количеству выстрелов (п), т. е. Р,= 1 - (1- р)", где (1- р) - вероятность промаха.

Таким образом, вероятность поражения цели характеризует надежность стрельбы, т. е. показывает, в скольких случаях из ста, в среднем, в данных условиях будет поражена цель не менее, чем при одном попадании

Стрельба считается достаточно надежной, если вероятность поражения цели не менее 80%

Глава 3.

Весовые и линейные данные

Пистолет Макарова (рис.22) является личным оружием нападения и защиты, предназначенным для поражения противника на коротких расстояниях. Огонь из пистолета наиболее эффективен на расстояниях до 50 м.

Рис. 22

Сравним технические данные пистолета ПМ с пистолетами других систем.

По основным качествам показателями безотказности пистолета ПМ превосходили другие образцы пистолетов.

Рис. 24

а – левая сторона; б – правая сторона. 1 – основание рукоятки; 2 – ствол;

3 – стойка для крепления ствола;

4 – окно для размещения спускового крючка и гребня спусковой скобы;

5 – цапфенные гнезда для цапф спускового крючка;

6 – кривой паз для размещения и движения передней цапфы спусковой тяги;

7 – цапфенные гнезда для цапф курка и шептала;

8 – пазы для направления движения затвора;

9 – окно для перьев боевой пружины;

10 – вырез для затворной задержки;

11 – прилив с резьбовым отверстием для крепления рукоятки при помощи винта и боевой пружины при помощи задвижки;

12 – вырез для защелки магазина;

13 – прилив с гнездом для крепления спусковой скобы;

14 – боковые окна; 15 – спусковая скоба;

16 – гребень для ограничения движения затвора назад;

17 – окно для выхода верхней части магазина.

Ствол служит для направления полета пули. Внутри ствол имеет канал с четырьмя нарезами, вьющимися вверх направо.

Нарезы служат для сообщения вращательного движения. Промежутки между нарезами называются полями. Расстояние между противоположными полями (по диаметру) называются калибром канала ствола (у ПМ-9мм). В казенной части имеется патронник. Ствол соединяется с рамкой прессовой посадкой и закрепляется штифтом.

Рамка служит для соединения всех частей пистолета. Рамка с основанием рукоятки составляют одно целое.

Спусковая скоба служит для предохранения хвоста спускового крючка.

Затвор (рис. 25) служит для подачи патрона из магазина в патронник, запирания канала ствола при выстреле, удержания гильзы, извлечения патрона и постановки курка на боевой взвод.

Рис. 25

а – левая сторона; б – вид снизу. 1 – мушка; 2 - целик; 3 – окно для выбрасывания гильзы (патрона); 4 – гнездо для предохранителя; 5 – насечка; 6 – канал для помещения ствола с возвратной пружиной;

7 – продольные выступы для направления движения затвора по рамке;

8 – зуб для постановки затвора на затворную задержку;

9 – паз для отражателя; 10 – паз для разобщающего выступа рычага взвода; 11 – выем для разобщения шептала с рычагом взвода; 12 – досылатель;

13 – выступ для разобщения рычага взвода с шепталом; 1

4 – выем для помещения разобщающего выступа рычага взвода;

15 – паз для курка; 16 – гребень.

Ударник служит для разбивания капсюля (рис. 26)

Рис. 26

1 – боек; 2 – срез для предохранителя.

Выбрасыватель служит для удержания гильзы (патрона) в чашечке затвора до встречи с отражателем (рис. 27).

Рис. 27

1 – зацеп; 2 – пяточка для соединения с затвором;

3 – гнеток; 4 – пружина выбрасывателя.

Для работы выбрасывателя имеется гнеток и пружина выбрасывателя.

Предохранитель служит для обеспечения безопасности обращения с пистолетом (рис. 28).

Рис. 28

1 – флажок предохранителя; 2 – фиксатор; 3 – уступ;

4 – ребро; 5 – зацеп; 6 – выступ.

Целик вместе с мушкой служит для прицеливания (рис.25).

Возвратная пружина служит для возвращения затвора в переднее положение после выстрела, крайний виток одного из концов пружины имеет меньший диаметр по сравнению с другими витками. Этим витком пружина при сборке надевается на ствол (рис.29).

Рис. 29

Ударно-спусковой механизм (рис. 30) состоит из курка, шептала с пружиной, спусковой тяги с рычагом взвода, спускового крючка, боевой пружины и задвижки боевой пружины.

Рис.30

1 – курок; 2 – шептало с пружиной; 3 – спусковая тяга с рычагом взвода;

4 – боевая пружина; 5 – спусковой крючок; 6 – задвижка боевой пружины.

Курок служит для нанесения удара по ударнику (рис. 31).

Рис. 31
а – левая сторона; б – правая сторона; 1 – головка с насечкой; 2 – вырез;

3 – выем; 4 – предохранительный взвод; 5 – боевой взвод; 6 – цапфы;

7 – зуб самовзвода; 8 – выступ; 9 – углубление; 10 – кольцевой выем.

Шептало служит для удержания курка на боевом взводе и предохранительном взводе (рис. 32).

Рис. 32

1 – цапфы шептала; 2 – зуб; 3 – выступ; 4 – носик шептала;

5 – пружина шептала; 6 – стойка шептала.

Спусковая тяга с рычагом взвода служат для спуска курка с боевого взвода и взведении курка при нажиме на хвост спускового крючка (рис.33).

Рис. 33

1 – спусковая тяга; 2 – рычаг взвода; 3 – цапфы спусковой тяги;

4 – разобщающий выступ рычага взвода;

5 – вырез; 6 – выступ самовзвода; 7 – пяточка рычага взвода.

Спусковой крючок служит для спуска с боевого взвода и взведения курка при стрельбе самовзводом (рис. 34).

Рис. 34

1 – цапфа; 2 – отверстие; 3 – хвост

Боевая пружина служит для приведения в действие курка, рычага взвода и спусковой тяги (рис. 35).

Рис. 35

1 – широкое перо; 2 – узкое перо; 3 – отбойный конец;

4 – отверстие; 5 – защелка.

Задвижка боевой пружины служит для прикрепления боевой пружины к основанию рукоятки (рис. 30).

Рукоятка с винтом прикрывает боковые окна и заднюю стенку основания рукоятки и служит для удобства удержания пистолета в руке (рис. 36).

Рис. 36

1 – антабка; 2 – пазы; 3 – отверстие; 4 – винт.

Затворная задержка удерживает затвор в заднем положении по израсходованию всех патронов из магазина (рис. 37).

Рис. 37

1 – выступ; 2 – кнопка с насечкой; 3 – отверстие; 4 – отражатель.

Она имеет: в передней части – выступ для удержания затвора в заднем положении; кнопку с насечкой для освобождения затвора нажатием руки; в задней части – отверстие для соединения с левой цапфой шептала; в верхней части – отражатель для отражения наружу гильз (патронов) через окно в затворе.

Магазин служит для помещения подавателя и крышки магазина (рис. 38).

Рис. 38

1 – корпус магазина; 2 – подаватель;

3 – пружина подавателя; 4 – крышка магазина.

К каждому пистолету придается принадлежность: запасной магазин, протирка, кобура, пистолетный ремешок.

Рис. 39

Надежность запирания канала ствола при выстреле достигается большой массой затвора и силой возвратной пружины.

Принцип работы пистолета заключается в следующем: при нажатии на хвост спускового крючка, курок, освобождаясь от шептала, под действием боевой пружины ударяет по ударнику, который бойком разбивает капсюль патрона. В результате воспламеняется пороховой заряд и образуется большое количество газов, которые давят во все стороны одинаково. Пуля давлением пороховых газов выбрасывается из канала ствола, затвор под давлением газов, передающихся через дно гильзы, отходит назад, удерживая выбрасывателем гильзу сжимая возвратную пружину. Гильза при встрече с отражателем выбрасывается через окно в затворе. При отходе назад затвор поворачивает курок и ставит его на боевой взвод. Под воздействием возвратной пружины затвор возвращается вперед, захватывая очередной патрон из магазина, и досылает его в патронник. Канал ствола заперт свободным затвором, пистолет готов к выстрелу.

Рис. 40

Для производства следующего выстрела необходимо отпустить спусковой крючок и снова нажать на него. По израсходовании всех патронов затвор становится на затворную задержку и остается в крайне заднем положении.

Выстреле и после выстрела

Для заряжания пистолета необходимо:

· снарядить магазин патронами;

· вставить магазин в основание рукоятки;

· выключить предохранитель (повернуть флажок вниз)

· отвести затвор в крайнее заднее положение и резко отпустить его.

При снаряжении магазина патроны ложатся на подавателе в один ряд, сжимая пружину подавателя, которая, разжимаясь, поднимает патроны вверх. Верхний патрон удерживается загнутыми краями боковых стенок корпуса магазина.

При вставлении снаряженного магазина в рукоятку защелка заскакивает за выступ на стенке магазина и удерживает его в рукоятке. Подаватель находиться внизу под патронами, его зацеп не действует на затворную задержку.

При выключении предохранителя его выступ для восприятия удара курка поднимается, зацеп выходит из выема курка, освобождает выступ курка, таким образом, освобождается курок.

Полочка уступа на оси предохранителя освобождает шептало, которое под действием своей пружины опускается вниз, носик шептала становиться впереди предохранительного взвода курка

Ребро предохранителя выходит из-за левого выступа рамки и разъединяет затвор с рамкой.

Затвор может быть отведен рукой назад.

При отведении затвора назад происходит следующие: двигаясь по продольным пазам рамки затвор поворачивает курок, шептало под действием пружины заскакивает своим носиком за боевой взвод курка. Движение затвора назад ограничивается гребнем спусковой скобы. Возвратная пружина находиться в наибольшем сжатии.

При повороте курка передняя часть кольцевого выема смещает спусковую тягу с рычагом взвода вперед и несколько вверх, при этом выбирается часть свободного хода спускового крючка. Поднимаясь вверх вниз рычага взвода подходит к выступу шептала.

Патрон поднимается подавателем и становится впереди досылателя затвора.

При отпускании затвора возвратная пружина посылает его вперед, досылатель затвора продвигает верхний патрон в патронник. Патрон, скользя по загнутым краям боковых спинок корпуса магазина и по скосу на приливе ствола и в нижней части патронника, входит в патронник упираясь передним срезом гильзы в уступ патронника. Канал ствола заперт свободным затвором. Очередной патрон поднимается вверх до упора в гребень затвора.

Зацеп выбрасывается, заскакивая в кольцевую проточку гильзы. Курок – на боевом взводе (см. рис. 39 на стр. 88).

Осмотр боевых патронов

Осмотр боевых патронов производится с целью обнаружения неисправностей, которые могут привести к задержкам при стрельбе. При осмотре патронов перед стрельбой или заступлением в наряд необходимо проверить:

· нет ли на гильзах ржавчины, зеленого налета, вмятин, царапин, не вытаскивается ли пуля из гильзы.

· Нет ли среди боевых патронов учебных.

Если патроны запылились или загрязнились, покрылись небольшим зеленым налетом или ржавчиной, их необходимо обтереть сухой чистой ветошью.

Индекс 57-Н-181

9 мм патрон со свинцовым сердечником выпускается на экспорт Новосибирским заводом низковольтной аппаратуры (масса пули – 6,1г, начальная скорость – 315 м/с), Тульским патронным заводом (масса пули – 6,86г, начальная скорость – 303 м/с), Барнаульским станкостроительным заводом (масса пули – 6,1 г, начальная скорость – 325 м/с). Предназначен для поражения живой силы на дальности до 50 м. Применяется при стрельбе из 9 мм пистолета ПМ, 9 мм пистолета ПММ.

Калибр, мм - 9,0

Длина гильзы, мм – 18

Длина патрона, мм – 25

Масса патрона, г - 9,26-9,39

Марка пороха, - П-125

Масса порохового заряда, гр. - 0,25

Скорость в10 - 290-325

Капсюль-воспламенитель - КВ-26

Диаметр пули, мм - 9,27

Длина пули, мм - 11,1

Масса пули, г - 6,1- 6,86

Материал сердечника – свинец

Кучность - 2,8

Пробивное действие - не нормируется.

Спуск курка

Спуск курка по своему удельному весу в производстве меткого выстрела занимает первостепенное значение и является определяющим показателем степени подготовленности стрелка. Все ошибки стрельбы возникают исключительно вследствие неправильной обработки спуска курка. Ошибки прицеливания и колебания оружия позволяют показывать достаточно приличные результаты, но ошибки спуска неминуемо приводят к резкому увеличению рассеивания и даже к промахам.

Овладение техникой правильного спуска - это краеугольный камень искусства меткого выстрела из любого ручного оружия. Только тот, кто поймет это и сознательно овладеет техникой спуска курка, будет уверенно поражать любые цели, в любом состоянии сможет показывать высокие результаты и полностью реализовать боевые свойства личного оружия.

Спуск курка является самым сложным элементом для освоения, требующим длительной и самой кропотливой работы.

Напомним, что при вылете пули из канала ствола затвор смещается назад на 2 мм, и на руку никакого воздействия в это время нет. Пуля летит туда, куда было наведено оружие в момент, когда она покидает канал ствола. Следовательно, правильно нажать на спусковой крючок - это выполнить такие действия, при которых оружие не меняет своего прицельного положения в период от срыва курка до вылета пули из ствола.

Время от срыва курка до вылета пули очень мало и составляет примерно 0.0045 с, из которых 0.0038 с составляет время вращения курка и 0.00053-0.00061 с – время прохождения пули по стволу. Тем не менее за такой короткий временной промежуток при ошибках в обработке спуска оружие успевает отклониться от прицельного положения.

Что же это за ошибки, и каковы причины их появления? Для выяснения этого вопроса необходимо рассмотреть систему: стрелок-оружие, при этом следует различать две группы причин возникновения ошибок.

1. Технические причины - ошибки, обусловленные несовершенством серийного оружия (зазоры межу подвижными частями, плохая чистота обработки поверхностей, засорение механизмов, износ ствола, несовершенство и плохая отладка ударно-спускового механизма и т.п.)

2. Причины человеческого фактора - ошибки непосредственно человека, обусловленные различными физиологическими и психоэмоциональными особенностями организма каждого человека.

Обе группы причин возникновения ошибок самым тесным образом между собой связаны, проявляются в комплексе и влекут одна другую. Из первой группы технических ошибок наиболее ощутимую роль, отрицательно сказывающуюся на результате, играет несовершенство ударно-спускового механизма, к недостаткам которого относятся:

баллистика

ж. греч. наука о движении брошенных (метаемых) тел; ныне особенно пушечных снарядов; баллистический, относящийся до этой науки; баллиста ж. и баллист м. снаряд, орудие для метки тяжестей, особенно старинная военная машина, для метки камней.

Толковый словарь русского языка. Д.Н. Ушаков

баллистика

(али), баллистики, мн. нет, ж. (от греч. ballo - мечу) (воен.). Наука о полете орудийных снарядов.

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

баллистика

И, ж. Наука о законах полета снарядов, мин, бомб, пуль.

прил. баллистический, -ая, -ое. Баллистическая ракета (проходящая часть пути как свободно брошенное тело).

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

баллистика

    Раздел теоретической механики, в котором изучаются законы движения тела, брошенного под углом к горизонту.

    1. Научная дисциплина, изучающая законы движения снарядов, мин, пуль, неуправляемых ракет и т.п.

      Учебный предмет, содержащий теоретические основы данной научной дисциплины.

      разг. Учебник, излагающий содержание данного учебного предмета.

Энциклопедический словарь, 1998 г.

баллистика

БАЛЛИСТИКА (нем. Ballistik, от греч. ballo - бросаю) наука о движении артиллерийских снарядов, неуправляемых ракет, мин, бомб, пуль при стрельбе (пуске). Внутренняя баллистика изучает движение снаряда в канале ствола (или в других ограничивающих движение условиях) под действием пороховых газов, внешняя - после вылета его из канала ствола.

Баллистика

(нем. Ballistik, от греч. ballo ≈ бросаю), наука о движении артиллерийских снарядов, пуль, мин, авиабомб, активнореактивных и реактивных снарядов, гарпунов и т.п. Б. ≈ военно-техническая наука, основывающаяся на комплексе физико-математических дисциплин. Различают внутреннюю и внешнюю баллистику.

Внутренняя Б. изучает движение снаряда (или другие тела, механическа свобода которого ограничена определенными условиями) в канале ствола орудия под действием пороховых газов, а также закономерности других процессов, происходящих при выстреле в канале ствола или каморе пороховой ракеты. Рассматривая выстрел как сложный процесс быстрого превращения химической энергии пороха в тепловую, а затем в механическую работу перемещения снаряда, заряда и откатных частей орудия, внутренняя Б. различает в явлении выстрела: предварительный период ≈ от начала горения пороха до начала движения снаряда; 1-й (основной) период ≈ от начала движения снаряда до конца горения пороха; 2-й период ≈ от конца горения пороха до момента вылета снаряда из канала ствола (период адиабатическом расширения газов) и период последействия пороховых газов на снаряд и ствол. Закономерности процессов, связанные с последним периодом, рассматриваются специальным разделом баллистики ≈промежуточной баллистикой. Конец периода последействия на снаряд разделяет область явлений, изучаемых внутренней и внешней Б. Основными разделами внутренней Б. являются пиростатика, пиродинамика и баллистическое проектирование орудий. Пиростатика изучает законы горения пороха и газообразования при сгорании пороха в постоянном объёме и устанавливает влияние химической природы пороха, его формы и размеров на законы горения и газообразования. Пиродинамика изучает процессы и явления, происходящие в канале ствола при выстреле, и устанавливает связи между конструктивными характеристиками канала ствола, условиями заряжания и различными физико-химическими и механическими процессами, протекающими при выстреле. На основании рассмотрения этих процессов, а также сил, действующих на снаряд и ствол, устанавливается система уравнений, описывающих процесс выстрела, в том числе основное уравнение внутренней Б., связывающее величину сгоревшей части заряда, давление пороховых газов в канале ствола, скорость снаряда и длину пройденного им пути. Решение этой системы и нахождение зависимости изменения давления пороховых газов Р, скорости снаряда v и других параметров от пути снаряда 1 (рис. 1 ) и от времени его движения по каналу ствола является первой основной (прямой) задачей внутренней Б. Для решения этой задачи применяются: аналитический метод, методы численного интегрирования [в т. ч. на основе электронно-вычислительных машин (ЭВМ)] и табличные методы. Во всех этих методах ввиду сложности процесса выстрела и недостаточной изученности отдельных факторов делаются некоторые допущения. Большое практическое значение имеют поправочные формулы внутренней Б., позволяющие определить изменение дульной скорости снаряда и максимального давления в канале ствола при изменении различных условий заряжания.

══Баллистическое проектирование орудий является второй основной (обратной) задачей внутренней Б. Оно определяет конструктивные данные канала ствола и условия заряжания, при которых снаряд данного калибра и массы получит при вылете заданную (дульную) скорость. Для выбранного при проектировании варианта ствола рассчитываются кривые изменения давления газов в канале ствола и скорости снаряда по длине ствола и по времени. Эти кривые являются исходными данными при проектировании артиллерийской системы в целом и боеприпасов к ней. Внутренняя Б. изучает также процесс выстрела при специальных и комбинированных зарядах, в стрелковом оружии, системах с коническими стволами, системах с истечением газов во время горения пороха (газодинамические и безоткатные орудия, миномёты). Важным разделом является также внутренней Б. пороховых ракет, которая развилась в специальную науку. Основные разделы внутренней Б. пороховых ракет составляют: пиростатика полузамкнутого объёма, рассматривающая законы горения пороха при сравнительно небольшом постоянном давлении; решение основные задачи внутр. Б. пороховой ракеты, состоящей в определении (при заданных условиях заряжания) закона изменения давления пороховых газов в камере в зависимости от времени, а также закона изменения силы тяги для обеспечения требуемой скорости ракеты; баллистическое проектирование пороховой ракеты, состоящее в определении энергетических характеристик пороха, веса и формы заряда, а также конструктивных параметров сопла, которые обеспечивают при заданном весе боевой части ракеты необходимую силу тяги во время её действия.

Внешняя Б. изучает движение неуправляемых снарядов (мин, пуль и т.д.) после вылета их из канала ствола (пускового устройства), а также факторы, влияющие на это движение. Основное её содержанием являются изучение всех элементов движения снаряда и сил, действующих на него в полёте (сила сопротивления воздуха, сила тяжести, реактивная сила, сила, возникающая в период последействия, и др.); движения центра масс снаряда с целью расчёта его траектории (рис. 2 ) при заданных начальных и внешних условиях (основная задача внешней Б.), а также определение устойчивости полёта и рассеивания снарядов. Важными разделами внешней Б. являются теория поправок, разрабатывающая методы оценки влияния факторов, определяющих полёт снаряда, на характер его траектории, а также методика составления таблиц стрельбы и способов нахождения оптимального внешнебаллистического варианта при проектировании артиллерийской систем. Теоретическое решение задач о движении снаряда и задач теории поправок сводится к составлению уравнений движения снаряда, упрощению этих уравнений и отысканию методов их решения; последнее значительно облегчилось и ускорилось с появлением ЭВМ. Для определения начальных условий (начальные скорость и угол бросания, форма и масса снаряда), необходимых для получения заданной траектории, во внешней Б. пользуются специальными таблицами. Разработка методики составления таблиц стрельбы состоит в определении оптимального сочетания теоретических и экспериментальных исследований, позволяющих получить таблицы стрельбы требуемой точности при минимальных затратах времени. Методами внешней Б. пользуются также при изучении законов движения космических аппаратов (при их движении без воздействия управляющих сил и моментов). С появлением управляемых снарядов внешней Б. сыграла большую роль в становлении и развитии теории полёта, став частным случаем последней.

Возникновение Б. как науки относится к 16 в. Первыми трудами по Б. являются книги итальянца Н. Тартальи «Новая наука» (1537) и «Вопросы и открытия, относящиеся к артиллерийской стрельбе» (1546). В 17 в. фундаментальные принципы внешней Б. были установлены Г. Галилеем, разработавшим параболическую теорию движения снарядов, итальянцем Э. Торричелли и французом М. Мерсенном, который предложил назвать науку о движении снарядов баллистикой (1644). И. Ньютон провёл первые исследования о движении снаряда с учётом сопротивления воздуха ≈ «Математические начала натуральной философии» (1687). В 17≈18 вв. исследованием движения снарядов занимались: голландец Х. Гюйгенс, француз П. Вариньон, швейцарец Д. Бернулли, англичанин Б. Робинс, русский учёный Л. Эйлер и др. Экспериментальные и теоретические основы внутренней Б. заложены в 18 в. в трудах Робинса, Ч. Хеттона, Бернулли и др. В 19 в. были установлены законы сопротивления воздуха (законы Н. В. Маиевского, Н. А. Забудского, Гаврский закон, закон А. Ф. Сиаччи). В начале 20 в. дано точное решение основной задачи внутренней Б. ≈ работы Н. Ф. Дроздова (1903, 1910), исследовались вопросы горения пороха в неизменном объёме ≈ работы И. П.Граве (1904) и давления пороховых газов в канале ствола ≈ работы Н. А. Забудского (1904, 1914), а также француза П. Шарбонье и итальянца Д. Бианки. В СССР большой вклад в дальнейшее развитие Б. внесён учёными Комиссии особых артиллерийских опытов (КОСЛРТОП) в 1918≈26. В этот период В. М. Трофимовым, А. Н. Крыловым, Д. А. Вентцелем, В. В. Мечниковым, Г. В. Оппоковым, Б. Н. Окуневым и др. выполнен ряд работ по совершенствованию методов расчёта траектории, разработке теории поправок и по изучению вращательного движения снаряда. Исследования Н. Е. Жуковского и С. А. Чаплыгина по аэродинамике артиллерийских снарядов легли в основу работ Е. А. Беркалова и др. по совершенствованию формы снарядов и увеличению дальности их полёта. В. С. Пугачев впервые решил общую задачу о движении артиллерийского снаряда.

Важную роль в решении проблем внутренней Б. играли исследования Трофимова, Дроздова и И. П. Граве, написавшего в 1932≈38 наиболее полный курс теоретической внутренней Б. значительный вклад в развитие методов оценки и баллистического исследования артиллерийских систем и в решение специальных задач внутренней Б. внесли М. Е. Серебряков, В. Е. Слухоцкий, Б. Н. Окунев, а из иностранных авторов ≈ П. Шарбонье, Ж. Сюго и др.

В период Великой Отечественной войны 1941≈45 под руководством С. А. Христиановича проведены теоретические и экспериментальные работы по повышению кучности реактивных снарядов. В послевоенное время эти работы продолжались; исследовались также вопросы повышения начальных скоростей снарядов, установления новых законов сопротивления воздуха, повышения живучести ствола, развития методов баллистического проектирования. Значительное развитие получили работы по исследованию периода последействия (В. Е. Слухоцкий и др.) и развитию методов Б. для решения специальных задач (гладкоствольные системы, активнореактивные снаряды и др.), задач внешней и внутренней Б. применительно к реактивным снарядам, дальнейшего совершенствования методики баллистических исследований, связанных с использованием ЭВМ.

Лит.: Граве И. П., Внутренняя баллистика. Пиродинамика, в. 1≈4, Л., 1933≈37; Серебряков М. Е., Внутренняя баллистика ствольных систем и пороховых ракет, М., 1962 (библ.); Корнер Д., Внутренняя баллистика орудий, пер. с англ., М., 1953; Шапиро Я. М., Внешняя баллистика, М., 1946.

Ю. В. Чуев, К. А. Николаев.

Википедия

Баллистика

Балли́стика - наука о движении тел, брошенных в пространстве, основанная на математике и физике. Она занимается, главным образом, исследованием движения пуль и снарядов, выпущенных из огнестрельного оружия, ракетных снарядов и баллистических ракет.

В зависимости от этапа движения снаряда различают:

  • внутреннюю баллистику, занимающуюся исследованием движения снаряда в стволе орудия;
  • промежуточную баллистику, исследующую прохождение снаряда через дульный срез и поведение в районе дульного среза. Она важна специалистам по точности стрельбы, при разработке глушителей, пламегасителей и дульных тормозов;
  • внешнюю баллистику, исследующую движение снаряда в атмосфере или пустоте под действием внешних сил. Ею пользуются, когда рассчитывают поправки на превышение, ветер и деривацию;
  • преградную или терминальную баллистику, которая исследует последний этап - движение пули в преграде. Терминальной баллистикой занимаются оружейники-специалисты по снарядам и пулям, прочности и другие специалисты по броне и защите, а также криминалисты.

Примеры употребления слова баллистика в литературе.

Когда волнение улеглось, Барбикен заговорил еще более торжественным тоном: -- Вам известно, какие успехи сделала баллистика за последние годы и до какой высокой степени совершенства могли бы дойти огнестрельные орудия, если бы война все еще продолжалась!

Конечно, не может быть и речи о том, что баллистика не прогрессирует, но да будет вам известно, что в средние века добивались результатов, смею сказать, еще более удивительных, чем наши.

Теперь дело шло о попытке нарушить равновесие Земли, - попытке, основанной на вычислениях точных и неоспоримых, попытке, которую развитие баллистики и механики делало вполне исполнимой.

Четырнадцатого сентября телеграмма была препровождена на Вашингтонскую обсерваторию, с просьбой выяснить последствия, учитывая законы баллистики и все географические данные.

Барбикен,-- как я задал себе вопрос: нельзя ли нам, не выходя за пределы нашей специальности, отважиться на какое-нибудь выдающееся предприятие, достойное девятнадцатого столетия, и не позволят ли высокие достижения баллистики с успехом его осуществить?

Нам предстоит разрешить одну из основных проблем баллистики , этой науки из наук, трактующей о движении снарядов, то есть тел, которые, получив известный толчок, устремляются в пространство и далее летят уже в силу инерции.

А сейчас, насколько я понимаю, мы ничего не в состоянии предпринять, пока полиция не получит отчет из отдела баллистики относительно пуль, извлеченных из тела миссис Эллис.

Если в Отделе баллистики выяснили, что Надин Эллис убили пулей, выпущенной из револьвера, который полиция нашла среди вещей Элен Робб в мотеле, то у твоей клиентки нет и одного шанса из ста.

Насколько мне известно, ее передали в Отдел баллистики и эксперты пришли к заключению, что она выпущена из того револьвера, что лежал на полу рядом с женщиной.

Я прошу Отдел баллистики провести необходимые эксперименты и сравнить пули до начала завтрашнего заседания, - заявил судья Кейзер.

Я прошу занести в протокол, что во время перерыва в слушании эксперт по вопросам баллистики Александр Редфилд сделал несколько пробных выстрелов из всех трех револьверов, находящихся в собственности Джорджа Анклитаса.

Высвободив на короткое время одну руку, он провел тыльной стороной ладони по лбу, как бы желая изгнать из головы призрак римской баллистики раз и навсегда.

Опыты показали, что давление действительно сильно снижается, но позднее эксперты баллистики говорили мне, что такой же эффект можно получить, сделав снаряд с длинным острым концом.

Второй залп российской минометной батареи, в точном соответствии с законами баллистики , накрыл разбегающихся в панике солдат.

А в артиллерийской науке -- в баллистике -- американцы, на диво всем, даже превзошли европейцев.

Баллистика - это наука о движении, полете и влиянии снарядов. Она разделена на несколько дисциплин. Внутренняя и внешняя баллистика имеют дело с движением и полетом снарядов. Переход между этими двумя режимами называется промежуточной баллистикой. Терминальная баллистика касается воздействия снарядов, отдельная категория охватывает степень поражения цели. Что изучает внутренняя и внешняя баллистика?

Пушки и ракеты

Пушечные и ракетные двигатели являются типами теплового двигателя, частично с превращением химической энергии в апропеллент (кинетическую энергию снаряда). Пропелленты отличаются от обычных видов топлива тем, что их сгорание не требует атмосферного кислорода. В ограниченном объеме производство горячих газов с помощью горючего топлива вызывает увеличение давления. Давление продвигает снаряд и увеличивает скорость горения. Горячие газы имеют тенденцию к эрозии ствола пистолета или горла ракеты. Внутренняя и внешняя баллистика стрелкового оружия изучает движение, полет и влияние, которое снаряд оказывает.

Когда заряд пропеллента в камере пистолета воспламеняется, газы сгорания сдерживаются выстрелом, поэтому давление возрастает. Снаряд начинает двигаться, когда давление на него преодолевает его сопротивление движению. Давление продолжает расти некоторое время, а затем падает, а выстрел ускоряется до высокой скорости. Быстрое горючее ракетное топливо вскоре исчерпано, и со временем выстрел выбрасывается из дула: скорость выстрела до 15 километров в секунду достигнуты. Откидные пушки выпускают газ через заднюю часть камеры, чтобы противодействовать силам отдачи.

Баллистической является ракета, которая направляется в течение относительно короткого начального активного участка полета, чья траектория впоследствии регулируется законами классической механики, в отличие, например, от крылатых ракет, которые направляются аэродинамическим образом в полете с работающим двигателем.

Траектория выстрела

Снаряды и пусковые установки

Снаряд - любой объект, проецируемый в пространство (пустое или нет) при приложении силы. Хотя любой объект в движении в пространстве (например, брошенный мяч) является снарядом, термин чаще всего относится к оружию дальнего боя. Математические уравнения движения используются для анализа траектории снаряда. Примеры снарядов включают шары, стрелы, пули, артиллерийские снаряды, ракеты и так далее.

Бросок - это запуск снаряда вручную. Люди необычайно хороши в метании из-за их высокой ловкости, это развитая черта. Свидетельство человеческого метания датируется 2 миллионами лет. Скорость метания 145 км в час, найденная у многих спортсменов, намного превышает скорость, с которой шимпанзе могут бросать предметы, что составляет около 32 км в час. Эта способность отражает способность человеческих плечевых мышц и сухожилий сохранять эластичность, пока она не понадобится для продвижения объекта.

Внутренняя и внешняя баллистика: кратко о видах оружия

Одними из самых древнейших пусковых устройств были обычные рогатки, лук и стрелы, катапульта. Со временем появились ружья, пистолеты, ракеты. Сведения из внутренней и внешней баллистики включают в себя информацию о различных видах оружия.

  • Сплинг - оружие, обычно используемое для выброса тупых снарядов, таких как камень, глина или свинцовая «пуля». У стропы имеется небольшая колыбель (сумка) в середине соединенных двух длин шнура. Камень помещается в сумку. Средний палец или большой палец помещается через петлю на конце одного шнура, а вкладка на конце другого шнура помещается между большим и указательным пальцами. Слинг качается по дуге, а табуляция выпускается в определенный момент. Это освобождает снаряд, чтобы лететь к цели.
  • Лук и стрелы. Лук - это гибкий кусок материала, который стреляет аэродинамическими снарядами. Тетива соединяет два конца, и, когда она оттягивается назад, концы палки сгибаются. Когда струна отпущена, потенциальная энергия согнутой палки преобразуется в скорость стрелки. Стрельба из лука - это искусство или спорт стрельбы из луков.
  • Катапульта - это устройство, используемое для запуска снаряда на большом расстоянии без помощи взрывных устройств - особенно различных типов древних и средневековых осадных двигателей. Катапульта использовалась с древних времен, поскольку она оказалась одним из наиболее эффективных механизмов во время войны. Слово «катапульта» происходит от латинского, которое, в свою очередь, происходит от греческого καταπέλτης, что означает «бросать, швырять». Катапульты были изобретены древними греками.
  • Пистолет - обычное трубчатое оружие или другое устройство, предназначенное для выпуска снарядов или другого материала. Снаряд может быть твердым, жидким, газообразным или энергичным и может быть свободным, как с пулями и артиллерийскими снарядами, так и с зажимами, как с зондами и китобойными гарпунами. Средство проецирования варьируется в соответствии с конструкцией, но обычно осуществляется действием давления газа, создаваемого путем быстрого сжигания пропеллента, или сжимается и хранится механическими средствами, работающими внутри трубки с открытым концом в виде поршня. Конденсированный газ ускоряет подвижный снаряд по длине трубки, придавая достаточную скорость, чтобы поддерживать движение снаряда, когда действие газа прекращается в конце трубки. В качестве альтернативы можно использовать ускорение посредством генерации электромагнитного поля, в этом случае можно отказаться от трубки и заменить направляющую.
  • Ракета - это ракета, космический корабль, самолет или другое транспортное средство, которое получает удар от ракетного двигателя. Выхлоп двигателя ракеты полностью сформирован из пропеллентов, перевозимых в ракете перед использованием. Ракетные двигатели работают действием и реакцией. Ракетные двигатели выталкивают ракеты вперед, просто бросая их выхлопы назад очень быстро. Хотя они сравнительно неэффективны для использования на низкой скорости, ракеты относительно легки и мощны, способны генерировать большие ускорения и достигать чрезвычайно высоких скоростей с разумной эффективностью. Ракеты не зависят от атмосферы и отлично работают в космосе. Химические ракеты являются наиболее распространенным типом высокопроизводительной ракеты, и они обычно создают их выхлопные газы при сжигании ракетного топлива. Химические ракеты хранят большое количество энергии в легко высвобождаемой форме и могут быть очень опасными. Однако тщательный дизайн, тестирование, конструкция и использование минимизируют риски.

Основы внешней и внутренней баллистики: основные категории

Баллистика может быть изучена с помощью высокоскоростной фотографии или высокоскоростных камер. Фотография выстрела, сделанная с сверхвысокой скоростью вспышки воздушного зазора, помогает рассмотреть пулю без размытия изображения. Баллистика часто разбивается на следующие четыре категории:

  • Внутренняя баллистика - изучение процессов, изначально ускоряющих снаряды.
  • Переходная баллистика - изучение снарядов при переходе на безналичный полет.
  • Внешняя баллистика - изучение прохождения снаряда (траектории) в полете.
  • Терминальная баллистика - изучение снаряда и его последствий по мере его завершения

Внутренняя баллистика является изучением движения в виде снаряда. В пушках она покрывает время от зажигания ракетного топлива до тех пор, пока снаряд не выйдет из ствола орудия. Это то, что изучает внутренняя баллистика. Это важно для дизайнеров и пользователей огнестрельного оружия всех типов, от винтовок и пистолетов, до высокотехнологичной артиллерии. Сведения из внутренней баллистики для ракетных снарядов охватывает период, в течение которого ракетный двигатель обеспечивает тягу.

Переходная баллистика, также известная как промежуточная баллистика, - это исследование поведения снаряда с момента его выхода из дула до тех пор, пока давление за снарядом не будет уравновешено, поэтому оно находится между понятием о внутренней и внешней баллистике.

Внешняя баллистика изучает динамику атмосферного давления вокруг пули и является частью науки о баллистике, которая занимается поведением снаряда без питания в полете. Эта категория часто ассоциируется с огнестрельным оружием и связана с незанятой фазой свободного полета пули после того, как она выходит из ствола пистолета и до того, как попадет в цель, поэтому она находится между переходной баллистикой и баллистикой терминала. Однако внешняя баллистика также касается свободного полета ракет и других снарядов, таких как шары, стрелы и так далее.

Терминальная баллистика - это исследование поведения и эффектов снаряда, когда он достигает цели. Данная категория имеет значение как для снарядов малого калибра, так и для снарядов большого калибра (стрельба из артиллерии). Изучение чрезвычайно высоких скоростных воздействий все еще очень новое и в настоящее время применяется в основном к проектированию космических аппаратов.

Судебная баллистика

Судебная баллистика включает в себя анализ пуль и пулевых воздействий для определения информации об использовании в суде или в другой части правовой системы. Отдельно от информации о баллистике, экзамены по огнестрельному оружию и инструментальной метке («баллистическая отпечатка пальца») предусматривают анализ доказательств огнестрельного оружия, боеприпасов и инструментов, чтобы установить, использовалось ли какое-либо огнестрельное оружие или инструмент при совершении преступления.

Астродинамика: орбитальная механика

Астродинамика - применение баллистики оружия, внешней и внутренней, и орбитальной механики к практическим проблемам движения ракет и других космических аппаратов. Движение этих объектов, как правило, рассчитывается из законов движения Ньютона и закона всемирного тяготения. Это основная дисциплина в области проектирования и контроля космической миссии.

Путешествие снаряда в полете

Основы внешней и внутренней баллистики касаются путешествия снаряда в полете. Путь полета пули включает: движение вниз по стволу, путь по воздуху и путь через цель. Основы внутренней баллистики (или исходной, внутри пушки) различаются в соответствии с типом оружия. Пули, выпущенные из винтовки, будут иметь больше энергии, чем аналогичные пули, выпущенные из пистолета. Еще больше порошка можно также использовать в ружейных патронах, потому что пулевые камеры могут быть спроектированы так, чтобы выдерживать большее давление.

Для более высокого давления требуется более крупная пушка с большей отдачей, которая медленнее загружается и генерирует больше тепла, что приводит к большему износу металла. На практике трудно измерить силы внутри ствола орудия, но один легко измеряемый параметр - это скорость, с которой пуля выходит из ствола (начальная скорость). Регулируемое расширение газов от горящего пороха создает давление (сила/площадь). Здесь находится база пули (эквивалентная диаметру ствола) и является постоянной. Поэтому энергия, передаваемая пуле (с заданной массой), будет зависеть от массового времени, умноженного на временной интервал, на котором применяется сила.

Последний из этих факторов является функцией длины ствола. Пулевое движение через пулеметное устройство характеризуется увеличением ускорения, когда расширяющиеся газы нажимают на него, но уменьшают давление в стволе при расширении газа. До точки уменьшения давления, чем дольше баррель, тем больше ускорение пули. Когда пуля проходит по стволу пистолета, происходит небольшая деформация. Это происходит из-за незначительных (редко крупных) недостатков или вариаций в нарезке или меток в стволе. Главной задачей внутренней баллистики является создание благоприятных условий для избежания подобных ситуаций. Эффект на последующей траектории полета пули обычно незначителен.

От пушки до цели

Внешнюю баллистику кратко можно назвать путешествием от пушки до цели. Пули обычно не следуют по прямой линии к цели. Действуют вращательные силы, которые удерживают пулю от прямой оси полета. Основы внешней баллистики включают такое понятие, как прецессия, которая относится к вращению пули вокруг центра масс. Нутация - это небольшое круговое движение на кончике пули. Ускорение и прецессия уменьшаются по мере увеличения расстояния от пули от ствола.

Одной из задач внешней баллистики является создание идеальной пули. Чтобы уменьшить сопротивление воздуха, идеальная пуля была бы длинной тяжелой иглой, но такой снаряд прошел бы прямо через цель, не рассеивая большую часть своей энергии. Сферы будут отставать и высвобождать больше энергии, но могут даже не попасть в цель. Хорошая аэродинамическая компромиссная форма пули - это параболическая кривая с низкой лобовой областью и формой ветвления.

Лучшей пулевой композицией является свинец, который имеет высокую плотность и дешев для получения. Его недостатки - тенденция к размягчению со скоростью > 1000 кадра в секунду, что приводит к тому, что он смазывает ствол и уменьшает точность, также свинец имеет тенденцию полностью расплавиться. Легирование свинца (Pb) с небольшим количеством сурьмы (Sb) помогает, но реальный ответ заключается в том, чтобы связать свинцовую пулю с жестким стальным бочонком через другой металл, достаточно мягкий, чтобы запечатать пулю в стволе, но с высокой температурой плавления. Медь (Cu) лучше всего подходит для этого материала в качестве «пиджака» для свинца.

Баллистика терминалов (попадание в цель)

Короткая, высокоскоростная пуля начинает резко рычать, поворачиваться и даже вращаться при входе в ткань. Это приводит к тому, что больше ткани смещается, увеличивается сопротивление и придает большую часть кинетической энергии цели. Более длинная, более тяжелая пуля может иметь больше энергии в более широком диапазоне, когда она попадает в цель, но она может проникать так хорошо, что она выходит из цели с большей частью своей энергии. Даже пуля с низкой кинетикой может принести значительный урон ткани. Пули производят повреждение тканей тремя способами:

  1. Разрушение и дробление. Диаметр повреждения при раздавливании в ткани - это диаметр пули или фрагмента, вплоть до длины оси.
  2. Кавитация - «постоянная» полость вызвана траекторией (дорожкой) самой пули с дроблением ткани, тогда как «временная» полость образована радиальным растяжением вокруг пулевой дорожки от непрерывного ускорения среды (воздуха или ткани) в результате пули, заставляя раневую полость растягиваться наружу. Для снарядов, движущихся с низкой скоростью, постоянные и временные полости почти одинаковы, но с большой скоростью и с пулевым рысканием временная полость становится больше.
  3. Ударные волны. Ударные волны сжимают среду и движутся впереди пули, а также по сторонам, но эти волны длится всего несколько микросекунд и не вызывают глубоких разрушений с малой скоростью. При большой скорости генерируемые ударные волны могут достигать до 200 атмосфер давления. Однако перелом кости из-за кавитации является чрезвычайно редким событием. Баллистическая волна давления от дальнего пулевого удара может вызвать у человека сотрясение, что вызывает острые неврологические симптомы.

Экспериментальные методы для демонстрации повреждения тканей использовали материалы с характеристиками, подобными мягким тканям и коже человека.

Дизайн пули

Конструкция пули важна в потенциале ранения. Гаагская конвенция 1899 года (и впоследствии Женевская конвенция) запрещала использование расширяющихся, деформируемых пуль в военное время. Поэтому у военных пуль есть металлическое облачение вокруг свинцового ядра. Разумеется, договор был в меньшей степени связан с соблюдением, чем тот факт, что современные военные штурмовые винтовки стреляют снарядами с высокой скоростью, а пули должны быть покрыты медной оболочкой, поскольку свинец начинает плавиться из-за тепла, создаваемого со скоростью > 2000 кадров в секунду.

Внешняя и внутренняя баллистика ПМ (пистолета Макарова) отличается от баллистики так называемых «разрушаемых» пуль, предназначенных для разрушения при ударе по твердой поверхности. Такие пули обычно изготавливают из металла, отличного от свинца, такого как медный порошок, уплотненный в виде пули. Расстояние мишени от дула играет большую роль в способности к ранению, поскольку большинство пуль, выпущенных из пистолетов, потеряли значительную кинетическую энергию (КЭ) на расстоянии 100 ярдов, в то время как высокоскоростные военные орудия по-прежнему имеют значительный КЭ даже на 500 ярдах. Таким образом, внешняя и внутренняя баллистика ПМ и военных и охотничьих ружей, предназначенных для доставки пуль с большим количеством КЭ на большее расстояние, будут различаться.

Проектирование пули для эффективной передачи энергии конкретной цели не является простым, поскольку цели отличаются. Понятие внутренней и внешней баллистики включает в себя также дизайн снаряда. Чтобы проникнуть в толстую шкуру и жесткую кость слона, пуля должна быть небольшого диаметра и достаточно прочной, чтобы противостоять дезинтеграции. Однако такая пуля проникает в большинство тканей, как копье, нанося немного больше урона, чем ножевая рана. Пуля, предназначенная для повреждения тканей человека, потребует определенных «тормозов», чтобы вся КЭ передавались цели.

Легче конструировать функции, которые помогают замедлить большую, медленную движущуюся пулю в тканях, чем небольшая, высокоскоростная пуля. К таким мерам относятся модификации формы, такие как круглая, сплющенная или куполообразная. Круглые носовые пули обеспечивают наименьшее торможение, обычно покрыты оболочкой и полезны главным образом в пистолетах с малой скоростью. Сплющенная конструкция обеспечивает наибольшее торможение только от формы, не покрывается оболочкой и используется в пистолетах с малой скоростью (часто для целевой практики). Конструкция купола является промежуточной между круглым и режущим инструментом и полезна при средней скорости.

Конструкция пули полых точек облегчает поворот пули «наизнанку» и выравнивание фронта, называемое «расширением». Расширение надежно происходит только при скоростях, превышающих 1200 кадров в секунду, поэтому подходит только для пистолетов с максимальной скоростью. Разрушаемая пуля, состоящая из порошка, предназначена для дезинтеграции при ударе, доставки всего КЭ, но без значительного проникновения, размер фрагментов должен уменьшаться по мере увеличения скорости удара.

Потенциал ранения

Тип ткани влияет на потенциал ранения, а также на глубину проникновения. Удельный вес (плотность) и эластичность являются основными тканевыми факторами. Чем выше удельный вес, тем больший урон. Чем больше эластичность, тем меньше урон. Таким образом, легкая ткань с низкой плотностью и высокой эластичностью повреждается меньше мышц с более высокой плотностью, но с некоторой эластичностью.

Печень, селезенка и мозг не имеют эластичности и легко травмируются, как и жировая ткань. Заполненные жидкостью органы (мочевой пузырь, сердце, большие сосуды, кишечник) могут лопнуть из-за создаваемых волн давления. Пуля, поражающая кость, может привести к фрагментации кости и / или к образованию многочисленных вторичных ракет, каждая из которых вызывает дополнительное ранение.

Баллистика пистолета

Это оружие легко скрывается, но трудно прицелиться точно, особенно в местах преступления. Большинство стрельб из стрелкового оружия происходят на расстоянии менее 7 ярдов, но даже в этом случае большинство пуль пропускают намеченную цель (только 11% патронов нападавших и 25% пуль, выпущенных полицейскими, попадают в намеченную цель в одном исследовании). Обычно оружие низкого калибра используется в преступлениях, потому что они дешевле и легче носить и легче контролировать во время стрельбы.

Уничтожение тканей может быть увеличено любым калибром с использованием пули с расширяющимися полыми точками. Двумя основными переменными в баллистике пистолетов являются диаметр пули и объем пороха в корпусе картриджа. Картриджи более старого дизайна были ограничены давлениями, которые они могли выдержать, но достижения в металлургии позволили удвоить и утроить максимальное давление, чтобы можно было генерировать больше кинетической энергии.

Вне орудийного ствола. Существует также понятие терминальной (конечной) баллистики, имеющий отношение к взаимодействию снаряда и тела, в которое он попадает, и движению снаряда после попадания. Терминальной баллистикой занимаются оружейники-специалисты по снарядам и пулям, прочнисты и другие специалисты по броне и защите, а также криминалисты. Также в практической физике в этом направлении используется закон рычага.

Главной задачей научной Б. является математическое решение задачи о зависимости кривого полета (траектории) брошенных и выстрелянных тел от ее факторов (силы пороха, силы тяжести, сопротивления воздуха, трения). Для этой цели является необходимым знание высшей математики, и добытые таким путем результаты представляют ценность только для людей науки и конструкторов оружия. Но понятно, что для солдата-практика стрельба является делом простого навыка.

История

Первые исследования относительно формы кривой полета снаряда (из огнестрельного оружия) сделал в 1546 г. Тарталья . Галилей установил при посредстве законов тяжести свою параболическую теорию, в которой не было принято во внимание влияние сопротивления воздуха на снаряды. Теорию эту можно применить без большой ошибки к исследованию полета ядер только при небольшом сопротивлении воздуха. Изучением законов воздушного сопротивления мы обязаны Ньютону, который доказал в 1687 г., что кривая полета не может быть параболой. Робинс (в 1742 г.) занялся определением начальной скорости ядра и изобрел употребляемый и поныне баллистический маятник . Первое настоящее решение основных задач баллистики дал знаменитый математик Эйлер . Дальнейшее движение Б. дали Гуттон, Ломбард (1797 г.) и Обенгейм (1814 г.). С 1820 г. влияние трения стало все более и более изучаться, и в этом отношении много работали физик Магнус , французские ученые Пуассон и Дидион и прусский полковник Отто. Новым толчком к развитию Б. послужило введение во всеобщее употребление нарезного огнестрельного орудия и продолговатых снарядов. Вопросы Б. стали усердно разрабатываться артиллеристами и физиками всех стран; для подтверждения теоретических выводов стали производиться опыты, с одной стороны, в артиллерийских академиях и школах, с другой стороны, на заводах, изготовляющих оружие; так, напр., очень полные опыты для определения сопротивления воздуха произведены были в Петерб. в 1868 и 1869 г., по распор. ген.-ад. Баранцева, заслуженным профессором Михайловской артиллерийской академии , Н. В. Маиевским , оказавшим большие услуги Б., - и в Англии Башфортом. В последнее время на опытном поле пушечного завода Круппа определялась скорость снарядов из орудий разного калибра в различных точках траектории, и достигнуты были очень важные результаты. Кроме Н. В. Маиевского, заслуги которого оценены надлежащим образом и всеми иностранцами, в ряду множества ученых, в новейшее время работавших по Б., особенно заслуживают внимания: проф. Алж. лицея Готье, франц. артиллеристы - гр. Сен-Роберт, гр. Магнус де Спарр, майор Мюзо, кап. Жуффре; итал. арт. капит. Сиаччи, изложивший в 1880 г. решение задач прицельной стрельбы, Нобль, Нейман, Прен, Эйбль, Резаль, Сарро и Пиобер, положивший основание внутренней Б.; изобретатели баллистических приборов - Уитстон, Константинов, Наве, Марсель, Депре, Лебуланже и др.

Баллистическая экспертиза

Исследование стрелкового оружия на стенде в ходе баллистической экспертизы.

Вид судебно-криминалистической экспертизы , задача которой состоит в том, чтобы дать следствию ответы на технические вопросы, возникающие в ходе расследования случаев применения огнестрельного оружия. В частности, установление соответствия между стреляной пулей (а также гильзой и характером разрушений, произведённых пулей) и оружием, из которого был произведён выстрел.

См. также

Примечания

Литература

По внешней баллистике

  • Н. В. Майевский «Курс внешн. Б.» (СПб., 1870);
  • Н. В. Майевский «О решении задач прицельной и навесной стрельбы» (№ 9 и 11 «Арт. Журн.», 1882 г.)
  • Н. В. Майевский «Изложение способа наименьших квадратов и применение его преимущественно к исследованию результатов стрельбы» (СПб., 1881 г.);
  • X. Г., «По поводу интегрирования уравнений вращательного движения продолговатого снаряда» (№ 1, « Арт. Журн.», 1887 г.);
  • Н. В. Майевский «Trait é de Baiist, exter.» (Париж, 1872);
  • Дидион, «Trait é de Balist.» (Пар., 1860);
  • Робинс, «Nouv. principes d’artil. com. par Euler et trad. par Lombard» (1783);
  • Лежандр, «Dissertation sur la question de ballst.» (1782);
  • Поль де Сен-Роберт, « Mè moires scientit.» (т. I, «Balist», Typ., 1872);
  • Отто, "Tables balist, g énèrales pour le tir élevè " (Пар., 1844);
  • Нейман, «Theorie des Schiessens und Werfens» («Archiv f. d. Off. d. preus. Art. und. Ing. Corps» 1838 и след.);
  • Пуассон (Poisson), «Recherches sur le mouvement des project» (1839);
  • Гели (H élie), «Traité de Baiist, experim.» (Пар., 1865);
  • Сиаччи, (Siacci), «Corso di Balistica» (Typ., 1870);
  • Магнус де Спарр (Magnus de Sparre), «Mouvement des projects oblongs dans le cas du tir du plein fouet» (Пар., 1875);
  • Мюзо (Muzeau), «Sur le mouv. des project. oblongs dans Pair» (Пар., 1878);
  • Башфорт (Baschforth), «A mathematical treatise on thy motion of projectiles» (Лонд., 1873);
  • Тилли (Tilly), «Balist.» (Брюсс., 1875);
  • Астье (Astier), «Balist ext.» (Фонтенбло, 1877);
  • Резаль (R èsal), «Traité de mec. gener.» t. i, «Mouv. des proj. obl. d. l’air» (Пар., 1873);
  • Матиэ (Mathieu), «Dynamique analyt»;
  • Сиаччи, «Nuovo metodo per rivolvere и problemi del tiro» (Giorno di Art. e Gen. 1880, part. II punt 4);
  • Отто (Otto), «Erörterung über die Mittel fü r Beurtheilung der Wahrscheinlichkeit des Treffens» (Берл., 1856);
  • Дидион (Didion), «Calcul des probabilit è s applique au tir des project.» (Пар., 1858);
  • Лиагр (Liagre), «Calcul des probabilit è s»;
  • Сиаччи (Siacci), «Sur le calcul des tables de tir» («Giorn. d’Art, et Gen.», parte II, 1875 г.) Жуффре (Jouffret),
  • Сиаччи (Siacci), «Sur r è tablisse meut et l’usage des tables de tir» (Париж, 1874);
  • Сиаччи (Siacci), «Sur la probabilit è du tir des bouches а feu et la methode des moindre carr è s» (Париж, 1875);
  • Гаупт, «Mathematische Theorie aer Flugbahn der gezog. Geschosse» (Берлин, 1876);
  • Гентш, «Ballistik der Handfeuerwaffen» (Берлин, 1876).

По внутренней баллистике

  • Нобль и Эйбль, «Исследование взрывчатых составов; действие восплам. пороха» (перев. В. А. Пашкевича, 1878);
  • Пиобер, «Propri étè s et effets de la poudre»;
  • Пиобер, «Mouvement des gazs de la poudre» (1860);
  • Поль де С.-Робер (Pol de St. Robert), «Principes de thermodynamique» (1870);
  • Резаль (R èsal), «Recherches sur le mouvement des project. dans des arme s а’feu» (1864);
  • A. Руцкий (Rutzki), «Die Theorie der Schiesspr ä parate» (Вена, 1870);
  • M. Э. Сарро (Sarrau) «Recherches theorethiqnes sur les effets de la poudre et des substances explosives» (1875);
  • M. Э. Сарро (Sarrau) «Nouvelles recherches sur les effets de la poudre dans les armes» (1876) и
  • M. Э. Сарро (Sarrau) «Formules pratiques des vitesse et des pressions dans les armes» (1877).

Ссылки

  • Зависимость формы траектории от угла бросания. Элементы траектории
  • Коробейников А. В., Митюков Н. В. Баллистика стрел по данным археологии: введение в проблемную область. Монография адресованная студентам и историческим реконструкторам. Описаны методики реконструкции стрел по их наконечникам, способы баллистической экспертизы городищ для оценки их уровня защиты, модели бронепробиваемости стрел и пр.

Wikimedia Foundation . 2010 .

Синонимы :
  • Безработица
  • Старый город (Вильнюс)

Смотреть что такое "Баллистика" в других словарях:

    БАЛЛИСТИКА - (от греч. ballein бросать). Наука о движении тяжелых тел, брошенных в пространство, преимущественно артиллерийских снарядов. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. БАЛЛИСТИКА [Словарь иностранных слов русского языка

    БАЛЛИСТИКА - (Ballistics) наука о движении тяжелого тела, брошенного в пространство. Прилагается преимущественно к изучению движения снарядов, пуль, а также авиабомб. Внутренняя Б. изучает движение снаряда внутри канала орудия, внешняя Б. по вылете снаряда.… … Морской словарь

    БАЛЛИСТИКА - (немецкое Ballistik, от греческого ballo бросаю), 1) наука о движении артиллерийских снарядов, неуправляемых ракет, мин, бомб, пуль при стрельбе (пуске). Внутренняя баллистика изучает движение снаряда в канале ствола, внешняя после его вылета. 2) … Современная энциклопедия

    БАЛЛИСТИКА - БАЛЛИСТИКА, наука о движении снарядов, включая пули, артиллерийские снаряды, бомбы, ракеты и УПРАВЛЯЕМЫЕ СНАРЯДЫ. Внутренняя баллистика изучает движение снарядов в канале ствола орудия. Внешняя баллистика исследует траекторию полета снарядов.… … Научно-технический энциклопедический словарь

Внутренняя и внешняя баллистика.

Выстрел и его периоды. Начальная скорость пули.

Занятие № 5.

«ПРАВИЛА СТРЕЛЬБЫ ИЗ СТРЕЛКОВОГО ОРУЖИЯ»

1. Выстрел и его периоды. Начальная скорость пули.

Внутренняя и внешняя баллистика.

2. Правила стрельбы.

Баллистика – это наука о движении тел, брошенных в пространстве. Она занимается, главным образом, исследованием движения снарядов, выпущенных из огнестрельного оружия, ракетных снарядов и баллистических ракет.

Различают внутреннюю баллистику, занимающуюся исследованием движения снаряда в канале орудия, в противоположность внешней баллистике, исследующей движение снаряда по выходе из орудия.

Мы будем рассматривать баллистику как науку о движении пули при стрельбе.

Внутренняя баллистика – это наука, занимающаяся изучением процессов, которые проходят при выстреле и, в особенности, при движении пули по каналу ствола.

Выстрелом называется выбрасывание пули из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.

При выстреле из стрелкового оружия происходят следующие явления. От удара бойка по капсюлю боевого патрона, посланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через отверстие в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании порохового (или т.н. боевого) заряда образуется большое количество сильно нагретых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор. В результате давления газов на пулю, она сдвигается с места и врезается в нарезы; вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу по направлению оси канала ствола. Давление газов на дно гильзы вызывает отдачу – движение оружия (ствола) назад. От давления газов на стенки гильзы и ствола происходит их растяжение (упругая деформация) и гильзы, плотно прижимаясь к патроннику, препятствуют прорыву пороховых газов в сторону затвора. Одновременно при выстреле возникает колебательное движение (вибрация) ствола и происходит его нагревание.

При сгорании порохового заряда примерно 25-30% выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа); 15‑25% энергии – на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола, нагревание стенок ствола, гильзы и пули; перемещение подвижных частей оружия, газообразной и несгоревшей частей пороха); около 40% энергии не используется и теряется после вылета пули из канала ствола.



Выстрел проходит в очень короткий промежуток времени: 0,001‑0,06 секунды. При выстреле различают четыре периода:

Предварительный;

Первый (или основной);

Третий (или период последействия газов).

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы канала ствола. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление (зависит от устройства нарезов, веса пули и твердости ее оболочки) называется давлением форсирования и достигает 250‑500 кг/см 2 . Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форсирования.

Первый (основной) период длится от начала движения пули до момента полного сгорания порохового заряда. В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины. Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см пути. Затем, вследствие быстрого увеличения скорости движения пули, объем запульного пространства увеличивается быстрее притока новых газов и давление начинает падать, к концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивает скорость ее движения. Скорость пули на вылете из канала ствола (дульная скорость ) несколько меньше начальной скорости.

Начальной скоростью называется скорость движения пули у дульного среза ствола, т.е. в момент её вылета из канала ствола. Она измеряется в метрах в секунду (м/с). Начальная скорость калиберных пуль и снарядов составляет 700‑1000 м/с.

Величина начальной скорости является одной из важнейших характеристик боевых свойств оружия. Для одной и той же пули увеличение начальной скорости приводит к увеличению дальности полета, пробивного и убойного действия пули , а также к уменьшению влияния внешних условий на ее полёт.

Пробивное действие пули характеризуется её кинетической энергией: глубиной проникновения пули в преграду определенной плотности.

При стрельбе из АК74 и РПК74 пуля со стальным сердечником 5,45 мм патрона пробивает:

o стальные листы толщиной:

· 2 мм на дальности до 950 м;

· 3 мм – до 670 м;

· 5 мм – до 350 м;

o стальной шлем (каска) – до 800 м;

o земляную преграду 20-25 см – до 400 м;

o сосновые брусья толщиной 20 см – до 650 м;

o кирпичную кладку 10-12 см – до 100 м.

Убойность пули характеризуется ее энергией (живой силой удара) в момент встречи с целью.

Энергия пули измеряется в килограмм-сила-метрах (1 кгс·м – энергия, которая необходима для совершения работы по подъему 1 кг на высоту 1 м). Для нанесения поражения человеку необходима энергия, равная 8 кгс·м, для нанесения такого же поражения животному – около 20 кгс·м. Энергия пули у АК74 на 100 м равна 111 кгс·м, а на 1000 м – 12 кгс·м; убойное действие пули сохраняется до дальности 1350 м.

Величина начальной скорости пули зависит от длины ствола, массы пули и свойств пороха. Чем длиннее ствол, тем большее время на пулю действуют пороховые газы и тем больше начальная скорость. При постоянной длине ствола и постоянной массе порохового заряда начальная скорость тем больше, чем меньше масса пули.

У некоторых видов стрелкового оружия, особенно короткоствольных (например, пистолет Макарова), второй период отсутствует, т.к. полного сгорания порохового заряда к моменту вылета пули из канала ствола не происходит.

Третий период (период последействия газов) длится от момента вылeтa пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/с, продолжают воздействовать на пулю и придают ей дополнительную скорость. Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола.

Раскаленные пороховые газы, истекающие из ствола вслед за пулей, при встрече с воздухом вызывают ударную волну, которая является источником звука выстрела. Смешивание раскаленных пороховых газов (среди которых есть окиси углерода и водорода) с кислородом воздуха вызывает вспышку, наблюдаемую как пламя выстрела.

Давление пороховых газов, действующее на пулю, обеспечивает придание ей поступательной скорости, а также скорости вращения. Давление, действующее в противоположную сторону (на дно гильзы), создает силу отдачи. Движение оружия назад под действием силы отдачи называется отдачей . При стрельбе из стрелкового оружия сила отдачи ощущается в виде толчка в плечо, руку, действует на установку или грунт. Энергия отдачи тем больше, чем мощнее оружие. У ручного стрелкового оружия отдача обычно не превышает 2 кг/м и воспринимается стреляющим безболезненно.

Рис. 1. Подбрасывание дульной части ствола оружия вверх при выстреле

в результате действия отдачи.

Действие отдачи оружия характеризуется величиной скорости и энергии, которой оно обладает при движении назад. Скорость отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия.

При стрельбе из автоматического оружия, устройство которого основано на принципе использования энергии отдачи, часть ее расходуется на сообщение движения подвижным частям и на перезаряжание оружия. Поэтому энергия отдачи при выстреле из такого оружия меньше, чем при стрельбе из неавтоматического оружия или из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстия в стенке ствола.

Сила давления пороховых газов (сила отдачи) и сила сопротивления отдаче (упор приклада, рукоятки, центр тяжести оружия и т.д.) расположены не на одной прямой и направлены в противоположные стороны. Образующаяся при этом динамическая пара сил приводит к возникновению углового перемещения оружия. Отклонения могут также происходить вследствие влияния действия автоматики стрелкового оружия и динамического изгиба ствола при движении по нему пули. Эти причины приводят к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола – угла вылета . Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил.

Кроме того, при выстреле ствол оружия совершает колебательное движение – вибрирует. В результате вибрации дульная часть ствола в момент вылета пули может также отклониться от первоначального положения в любую сторону (вверх, вниз, вправо, влево). Величина этого отклонения увеличивается при неправильном использовании упора для стрельбы, загрязнении оружия и т.п. Угол вылета считается положительным, когда ось канала ствола в момент вылета пули выше ее положения до выстрела, отрицательным, когда ниже. Величина угла вылета дается в таблицах стрельбы.

Влияние угла вылета на стрельбу у каждого экземпляра оружия устраняется при приведении его к нормальному бою (см. Руководство по 5,45‑мм автоматам Калашникова… – Глава 7 ). Однако при нарушении правил прикладки оружия, использования упора, а также правил ухода за оружием и его сбережения изменяются величина угла вылета и бой оружия.

В целях уменьшения вредного влияния отдачи на результаты в некоторых образцах стрелкового оружия (например, автомат Калашникова) применяются специальные устройства – компенсаторы.

Дульный тормоз-компесатор представляет собой специальное приспособление на дульной части ствола, действуя на которое, пороховые газы после вылета пули уменьшают скорость отдачи оружия. Кроме того, истекающие из канала ствола газы, ударяясь о стенки компенсатора, несколько опускают дульную часть ствола влево и вниз.

В АК74 дульный тормоз-компенсатор уменьшает отдачу на 20%.

1.2. Внешняя баллистика. Траектория полёта пули

Внешняя баллистика – это наука, изучающая движение пули в воздухе (т.е. после прекращения действия на нее пороховых газов).

Вылетев из канала ствола под действием пороховых газов, пуля движется по инерции. Для того чтобы определить, как же движется пуля необходимо рассматривать траекторию ее движения. Траекторией называется кривая линия, описываемая центром тяжести пули во время полета.

Пуля при полете в воздухе подвергается действиям двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую.

Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду, поэтому в этой среде затрачивается часть энергии пули, что вызывается тремя основными причинами:

· трением воздуха;

· образованием завихрений;

· образованием баллистической волны.

Равнодействующая этих сил составляет силу сопротивления воздуха.

Рис. 2.Образование силы сопротивления воздуха.

Рис. 3.Действие силы сопротивления воздуха на полет пули:

ЦТ – центр тяжести; ЦС – центр сопротивления воздуха.

Частицы воздуха, соприкасающиеся с движущейся пулей создают трение и уменьшают скорость полета пули. Примыкающий к поверхности пули слой воздуха, в котором движение частиц изменяется в зависимости от скорости называется пограничным слоем. Этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.

За донной частью пули образуется разряженное пространство, вследствие чего появляется разность давления на головную и донную части. Эта разность создает силу, направленную в сторону обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

Пуля при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей повышается плотность воздуха и образуется звуковая волна. Поэтому полет пули сопровождается характерным звуком. При скорости полета пули, меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, т.к. волны распространяются быстрее скорости полета пули. При скорости полета пули, большей скорости звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха – баллистическая волна, замедляющая скорость полета пули, т.к. пуля тратит часть своей энергии на создание этой волны.

Действие силы сопротивления воздуха на полет пули очень велико: оно вызывает уменьшение скорости и дальности полета. Например, пуля при начальной скорости 800 м/с в безвоздушном пространстве полетела бы на дальность 32620 м; дальность же полета этой пули при наличии сопротивления воздуха равна лишь 3900 м.

Величина силы сопротивления воздуха в основном зависит от:

§ скорости полета пули;

§ формы и калибра пули;

§ от поверхности пули;

§ плотности воздуха

и возрастает с увеличением скорости полета пули, ее калибра и плотности воздуха.

При сверхзвуковых скоростях полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны) выгодны пули с удлиненной остроконечной головной частью.

Таким образом, сила сопротивления воздуха уменьшает скорость движения пули и опрокидывает её. В результате этого пуля начинает «кувыркаться», возрастает сила сопротивления воздуха, уменьшается дальность полета и понижается её действие по цели.

Стабилизация пули в полете обеспечивается приданием пуле быстрого вращательного движения вокруг своей оси, а также – хвостовым оперением гранаты. Скорость вращения при вылете из нарезного оружия составляет: пуль 3000-3500 об/с, проворачивание оперенных гранат 10-15 об/с. Вследствие вращательного движения пули, воздействия силы сопротивления воздуха и силы тяжести происходит отклонение пули в правую сторону от вертикальной плоскости, проведенной через ось канала ствола, – плоскости стрельбы . Отклонение пули от нее при полете в сторону вращения называется деривацией .

Рис. 4. Деривация (вид траектории сверху).

В результате действия этих сил пуля совершает полет в пространстве по неравномерно изогнутой кривой линии, называемой траекторией .

Продолжим рассмотрение элементов и определений траектории пули.

Рис. 5. Элементы траектории.

Центр дульного среза ствола называется точкой вылета. Точка вылета является началом траектории.

Горизонтальная плоскость проходящая через точку вылета называется горизонтом оружия. На чертежах, изображающих оружие и траекторию сбоку, горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения.

наведенного оружия , называетсялинией возвышения .

Вертикальная плоскость, проходящая через линию возвышения называетсяплоскостью стрельбы.

Угол, заключенный между линией возвышения и горизонтом оружия называетсяуглом возвышения. Если этот угол отрицательный, то он называетсяуглом склонения (снижения).

Прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули , называется линией бросания .

Угол, заключенный между линией бросания и горизонтом оружия, называется углом бросания .

Угол, заключенный между линией возвышения и линией бросания, называется углом вылета .

Точка пересечения траектории с горизонтом оружия называетсяточкой падения.

Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия называетсяуглом падения.

Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью.

Скорость пули в точке падения называетсяокончательной скоростью.

Время движения пули от точки вылета до точки падения называется полным временем полета.

Наивысшая точка траектории называетсявершиной траектории.

Кратчайшее расстояние от вершины траектории до горизонта оружия называетсявысотой траектории.

Часть траектории от точки вылета до вершины называетсявосходящей ветвью, часть траектории от вершины до точки падения называется нисходящей ветвью траектории.

Точка на цели (или вне её), в которую наводится оружие, называется точкой прицеливания (ТП).

Прямая линия от глаза стрелка до точки прицеливания называется линией прицеливания.

Расстояние от точки вылета до пересечения траектории с линией прицеливания, называетсяприцельной дальностью.

Угол, заключенный между линией возвышения и линией прицеливания, называетсяуглом прицеливания.

Угол, заключенный между линией прицеливания и горизонтом оружия называетсяуглом места цели.

Прямая, соединяющая точку вылета с целью, называется линией цели .

Расстояние от точки вылета до цели по линии цели называется наклонной дальностью . При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания, а наклонная дальность – с прицельной дальностью.

Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи .

Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи .

Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули увеличивается. Но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения, при котором полная горизонтальная дальность полета пули становится наибольшей, называется углом наибольшей дальности (величина этого угла составляет около 35°).

Различают настильные и навесные траектории:

1. Настильной – называется траектория, получаемая при углах возвышения меньших угла наибольшей дальности.

2. Навесной – называется траектория, получаемая при углах возвышения больших угла наибольшей дальности.

Настильная и навесная траектории, получаемые при стрельбе из одного и того же оружия при одной и той же начальной скорости и имеющие одинаковую полную горизонтальную дальность, называются – сопряжёнными .

Рис. 6. Угол наибольшей дальности,

настильные, навесные и сопряжённые траектории.

Траектория более настильна, если она меньше поднимается над линией цели, и чем меньше угол падения. Настильность траектории влияет на величину дальности прямого выстрела, а также на величину поражаемого и мертвого пространства.

При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывает ошибка в определении установки прицела): в этом заключается практическое значение траектории.