Типы имитационного моделирования. Понятие имитационной модели и имитационного моделирования

В статье поговорим об имитационных моделях. Это довольно сложная тема, которая требует отдельного рассмотрения. Именно поэтому мы попробуем доступным языком объяснить этот вопрос.

Имитационные модели

О чем же идет речь? Начнем с того, что имитационные модели необходимы для воспроизведения каких-либо характеристик сложной системы, в которой происходит взаимодействие элементов. При этом такое моделирование имеет ряд особенностей.

Во-первых, это объект моделирования, который чаще всего представляет собой сложную комплексную систему. Во-вторых, это факторы случайности, которые присутствуют всегда и оказывают определенное влияние на систему. В-третьих, это необходимость описания сложного и длительного процесса, который наблюдается в результате моделирования. Четвертый фактор заключается в том, что без использования компьютерных технологий получить желаемые результаты невозможно.

Разработка имитационной модели

Она заключается в том, что каждый объект имеет определенный набор своих характеристик. Все они хранятся в компьютере при помощи специальных таблиц. Взаимодействие значений и показателей всегда описывается при помощи алгоритма.

Особенность и прелесть моделирования в том, что каждый его этап постепенный и плавный, что дает возможность пошагово менять характеристики и параметры и получать разные результаты. Программа, в которой задействованы имитационные модели, выводит информацию о полученных результатах, опираясь на те или иные изменения. Часто используется графическое или анимированное их представление, сильно упрощающее восприятие и понимание многих сложных процессов, которые осознать в алгоритмичном виде довольно сложно.

Детерминированность

Имитационные математические модели строятся на том, что они копируют качества и характеристики неких реальных систем. Рассмотрим пример, когда необходимо исследовать количество и динамику численности определённых организмов. Для этого при помощи моделирования можно отдельно рассматривать каждый организм, чтобы анализировать конкретно его показатели. При этом условия чаще всего задаются вербально. К примеру, по истечении какого-то отрезка времени можно задать размножение организма, а по прошествии более длительного срока - его гибель. Выполнение всех этих условий возможно в имитационной модели.

Очень часто приводят примеры моделирования движения молекул газа, ведь известно, что они двигаются хаотично. Можно изучать взаимодействие молекул со стенками сосуда или друг с другом и описывать результаты в виде алгоритма. Это позволит получать усредненные характеристики всей системы и выполнять анализ. При этом надо понимать, что подобный компьютерный эксперимент, по сути, можно назвать реальным, так как все характеристики моделируются очень точно. Но в чём смысл этого процесса?

Дело в том, что имитационная модель позволяет выделить конкретные и чистые характеристики и показатели. Она как бы избавляется от случайных, лишних и ещё ряда других факторов, о которых исследователи могут даже не догадываться. Заметим, что очень часто детерминирование и математическое моделирование схожи, если в качестве результата не должна быть создана автономная стратегия действий. Примеры, которые мы выше рассмотрели, касаются детерминированных систем. Они отличаются тем, что у них нет элементов вероятности.

Случайные процессы

Наименование очень просто понять, если провести параллель из обычной жизни. Например, когда вы стоите в очереди в магазине, который закрывается через 5 минут, и гадаете, успеете ли вы приобрести товар. Также проявление случайности можно заметить, когда вы звоните кому-то и считаете гудки, думая, с какой вероятностью дозвонитесь. Возможно, кому-то это покажется удивительным, но именно благодаря таким простым примерам в начале прошлого века зародилась новейшая отрасль математики, а именно теория массового обслуживания. Она использует статистику и теорию вероятности для того, чтобы сделать некоторые выводы. Позже исследователи доказали, что эта теория очень тесно связана с военным делом, экономикой, производством, экологией, биологией и т. д.

Метод Монте-Карло

Важный метод решения задачи на самообслуживание - это метод статистических испытаний или метод Монте-Карло. Заметим, что возможности исследования случайных процессов аналитическим путем довольно сложны, а метод Монте-Карло очень прост и универсален, в чем его главная особенность. Мы можем рассмотреть пример магазина, в который заходит один покупатель или несколько, приход больных в травмпункт по одному или целой толпой и т. д. При этом мы понимаем, что всё это случайные процессы, и промежутки времени между какими-то действиями - это независимые события, которые распределяются по законам, которые можно вывести, только проведя огромное количество наблюдений. Иногда это невозможно, поэтому берется усредненный вариант. Но какова цель моделирования случайных процессов?

Дело в том, что это позволяет получить ответы на множество вопросов. Банально необходимо рассчитать, сколько человеку придется стоять в очереди при учете всех обстоятельств. Казалось бы, это довольно простой пример, но это лишь первый уровень, а подобных ситуаций может быть очень много. Иногда рассчитать время очень важно.

Также можно задать вопрос о том, как можно распределить время, ожидая обслуживание. Еще более сложный вопрос касается того, как должны соотнестись параметры, чтобы до только что вошедшего покупателя очередь не дошла никогда. Кажется, что это довольно лёгкий вопрос, но если задуматься о нем и начать хотя бы немножко усложнять, становится понятно, что ответить не так легко.

Процесс

Как же происходит случайное моделирование? Используются математические формулы, а именно законы распределения случайных величин. Также используются числовые константы. Заметьте, что в данном случае не надо прибегать ни к каким уравнениям, которые используют при аналитических методах. В данном случае просто происходит имитация той же очереди, о которой мы говорили выше. Только сначала используются программы, которые могут генерировать случайные числа и соотносить их с заданным законом распределения. После этого проводится объемная, статистическая обработка полученных величин, которая анализирует данные на предмет, отвечают ли они изначальной цели моделирования. Продолжая дальше, скажем, что можно найти оптимальное количество людей, которые будут работать в магазине для того, чтобы очередь не возникала никогда. При этом используемый математический аппарат в данном случае - это методы математической статистики.

Образование

Анализу имитационных моделей в школах уделяется мало внимания. К сожалению, это может отразиться на будущем довольно серьезно. Дети должны со школы знать некоторые базовые принципы моделирования, так как развитие современного мира без этого процесса невозможно. В базовом курсе информатики дети могут с легкостью использовать имитационную модель "Жизнь".

Более основательное изучение может преподаваться в старших классах или в профильных школах. Прежде всего надо заняться изучением имитационного моделирования случайных процессов. Помните, что в российских школах такое понятие и методы только начинают вводиться, поэтому очень важно держать уровень образования учителей, которые со стопроцентной гарантией столкнутся с рядом вопросов от детей. При этом не будем усложнять задачу, акцентируя внимание на том, что речь идет об элементарном введении в эту тему, которое можно подробно рассмотреть за 2 часа.

После того как дети усвоили теоретическую базу, стоит осветить технические вопросы, которые касаются генерации последовательности случайных чисел на компьютере. При этом не надо загружать детей информацией о том, как работает вычислительная машина и на каких принципах строится аналитика. Из практических навыков их нужно учить создавать генераторы равномерных случайных чисел на отрезке или случайных чисел по закону распределения.

Актуальность

Поговорим немного о том, зачем нужны имитационные модели управления. Дело в том, что в современном мире обойтись без моделирования практически невозможно в любой сфере. Почему же оно так востребовано и популярно? Моделирование может заменить реальные события, необходимые для получения конкретных результатов, создание и анализ которых стоят слишком дорого. Или же может быть случай, когда проводить реальные эксперименты запрещено. Также люди пользуются им, когда просто невозможно построить аналитическую модель из-за ряда случайных факторов, последствий и причинных связей. Последний случай, когда используется этот метод, - это тогда, когда необходимо имитировать поведение какой-либо системы на протяжении данного отрезка времени. Для всего этого создаются симуляторы, которые пытаются максимально воспроизвести качества первоначальной системы.

Виды

Имитационные модели исследования могут быть нескольких видов. Так, рассмотрим подходы имитационного моделирования. Первое - это системная динамика, которая выражается в том, что есть связанные между собой переменные, определенные накопители и обратная связь. Таким образом чаще всего рассматриваются две системы, в которых есть некоторые общие характеристики и точки пересечения. Следующий вид моделирования - дискретно-событийное. Оно касается тех случаев, когда есть определенные процессы и ресурсы, а также последовательность действий. Чаще всего таким способом исследуют возможность того или иного события через призму ряда возможных или случайных факторов. Третий вид моделирования - агентный. Он заключается в том, что изучаются индивидуальные свойства организма в их системе. При этом необходимо косвенное или прямое взаимодействие наблюдаемого объекта и других.

Дискретно-событийное моделирование предлагает абстрагироваться от непрерывности событий и рассматривать только основные моменты. Таким образом случайные и лишние факторы исключаются. Этот метод максимально развит, и он используется во множестве сфер: от логистики до производственных систем. Именно он лучше всего подходит для моделирования производственных процессов. Кстати, его создал в 1960-х годах Джеффри Гордон. Системная динамика - это парадигма моделирования, где для исследования необходимо графическое изображение связей и взаимных влияний одних параметров на другие. При этом учитывается фактор времени. Только на основе всех данных создается глобальная модель на компьютере. Именно этот вид позволяет очень глубоко понять суть исследуемого события и выявить какие-то причины и связи. Благодаря этому моделированию строят бизнес-стратегии, модели производства, развитие болезней, планирование города и так далее. Этот метод был изобретён в 1950-х годах Форрестером.

Агентное моделирование появилось в 1990-х годах, оно является сравнительно новым. Это направление используется для анализа децентрализованных систем, динамика которых при этом определяется не общепринятыми законами и правилами, а индивидуальной активностью определенных элементов. Суть этого моделирования заключается в том, чтобы получить представление о новых правилах, в целом охарактеризовать систему и найти связь между индивидуальными составляющими. При этом изучается элемент, который активен и автономен, может принимать решения самостоятельно и взаимодействовать со своим окружением, а также самостоятельно меняться, что очень важно.

Этапы

Сейчас рассмотрим основные этапы разработки имитационной модели. Они включают её формулировку в самом начале процесса, построение концептуальной модели, выбор способа моделирования, выбор аппарата моделирования, планирование, выполнение задачи. На последнем этапе происходит анализ и обработка всех полученных данных. Построение имитационной модели - это сложный и длительный процесс, который требует большого внимания и понимания сути дела. Заметьте, что сами этапы занимают максимум времени, а процесс моделирования на компьютере - не больше нескольких минут. Очень важно использовать правильные модели имитационного моделирования, так как без этого не получится добиться нужных результатов. Какие-то данные получены будут, но они будут не реалистичны и не продуктивны.

Подводя итоги статьи, хочется сказать, что это очень важная и современная отрасль. Мы рассмотрели примеры имитационных моделей, чтобы понять важность всех этих моментов. В современном мире моделирование играет огромную роль, так как на его основании развиваются экономика, градостроение, производство и так далее. Важно понимать, что модели имитационных систем очень востребованы, так как они невероятно выгодны и удобны. Даже при создании реальных условий не всегда можно получить достоверные результаты, так как всегда влияет множество схоластических факторов, которые учесть просто невозможно.

Модель представляет собой абстрактное описание системы, уровень детализации которого определяет сам исследователь. Человек принимает решение о том, является ли данный элемент системы существенным, а, следовательно, будет ли он включен в описание системы. Это решение принимается с учетом цели, лежащей в основе разработки модели. От того, насколько хорошо исследователь умеет выделять существенные элементы и взаимосвязи между ними, зависит успех моделирования.

Система рассматривается как состоящая из множества взаимосвязанных элементов, объединенных для выполнения определенной функции. Определение системы во многом субъективно, т.е. оно зависит не только от цели обработки модели, но и от того, кто именно определяет систему.

Итак, процесс моделирования начинается с определения цели разработки модели, на основе которой затем устанавливаются границы системы и необходимый уровень детализации моделируемых процессов. Выбранный уровень детализации должен позволять абстрагироваться от неточно определенных из-за недостатка информации аспектов функционирования реальной системы. В описание системы, кроме того, должны быть включены критерии эффективности функционирования системы и оцениваемые альтернативные решения, которые могут рассматриваться как часть модели или как ее входы. Оценки же альтернативных решений по заданным критериям эффективности рассматриваются как выходы модели. Обычно оценка альтернатив требует внесения изменений в описание системы и, следовательно, перестройки модели. Поэтому на практике процесс построения модели является итеративным. После того как на основе полученных оценок альтернатив могут быть выработаны рекомендации, можно приступать к внедрению результатов моделирования. При этом в рекомендациях должны быть четко сформулированы как основные решения, так и условия их реализации.

Имитационное моделирование (в широком смысле) - есть процесс конструирования модели реальной системы и постановки экспериментов на этой модели с целью либо понять поведение системы, либо оценить (в рамках накладываемых ограничений) различные стратегии, обеспечивающие функционирование данной системы.

Имитационное моделирование (в узком смысле) - это представление динамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с хорошо известными операционными правилами (алгоритмами).

Итак, для создания имитационной модели надо выделить и описать состояния системы и алгоритмы (правила) его изменения. Далее это записывается в терминах некоторого инструментального средства моделирования (алгоритмического языка, специализированного языка) и обрабатывается на ЭВМ.

Имитационная модель (ИМ)- это логико-математическое описание системы, которое может быть использовано в ходе проведения экспериментов на цифровой ЭВМ.

ИМ могут использоваться для проектирования, анализа и оценки функционирования систем. С ИМ проводятся машинные эксперименты, которые позволяют сделать выводы о поведении системы:

· в отсутствии ее построения, если это проектируемая система;

· без вмешательства в ее функционирование, если это действующая система, экспериментирование с которой невозможно или нежелательно (высокие затраты, опасность);

· без разрушения системы, если цель эксперимента состоит в определении воздействия на нее.

Процесс формирования имитационной модели коротко можно представить следующим образом (Рис.2 ):

Рис.2 . Схема формирования имитационной модели

Вывод: для ИМ характерно воспроизведение явлений, описываемых формализированной схемой процесса, с сохранением их логической структуры, последовательности чередования во времени, а иногда и физического содержания.

Имитационное моделирование (ИМ) на ЭВМ находит широкое применение при исследовании и управлении сложными дискретными системами (СДС) и процессами, в них протекающими. К таким системам можно отнести экономические и производственные объекты, морские порты, аэропорты, комплексы перекачки нефти и газа, ирригационные системы, программное обеспечение сложных систем управления, вычислительные сети и многие другие. Широкое использование ИМ объясняется тем, что размерность решаемых задач и неформализуемость сложных систем не позволяют использовать строгие методы оптимизации.

Под имитацией будем понимать численный метод проведения на ЭВМ экспериментов с математическими моделями, описывающими поведение сложных систем в течение продолжительного времени.

Имитационный эксперимент представляет собой отображение процесса, протекающего в СДС в течение длительного отрезка времени (минута, месяц, год и т.д.), что занимает, как правило, несколько секунд или минут времени работы ЭВМ. Однако существуют задачи, для решения которых необходимо проводить так много вычислений при моделировании (как правило, это задачи, связанные с системами управления, моделированием поддержки принятия оптимальных решений, отработки эффективных стратегий управления и т.п.), что ИМ работает медленнее реальной системы. Поэтому возможность за короткое время промоделировать длительный период работы СДС не самое главное, что обеспечивает имитация.

Возможности имитационного моделирования:

1. С ИМ проводятся машинные эксперименты, которые позволяют сделать выводы о поведении системы:

· без ее построения, если это проектируемая система;

· без вмешательства в ее функционирование, если это действующая система, экспериментирование с которой невозможно или нежелательно (дорого, опасно);

· без ее разрушения, если цель эксперимента состоит в определении предельного воздействия на систему.

2. Экспериментально исследовать сложные взаимодействия внутри системы и понять логику ее функционирования.

4. Изучить воздействие внешних и внутренних случайных возмущений.

5. Исследовать степень влияния параметров системы на показатели эффективности.

6. Проверить новые стратегии управления и принятия решений при оперативном управлении.

7. Прогнозировать и планировать функционирование системы в будущем.

8. Проводить обучение персонала.

Основой имитационного эксперимента служит модель имитируемой системы.

ИМ развивалось для моделирования сложных стохастических систем - дискретных, непрерывных, комбинированных.

Моделирование означает, что задаются последовательные моменты времени и состояние модели вычисляется ЭВМ последовательно в каждый из этих моментов времени. Для этого необходимо задать правило (алгоритм) перехода модели из одного состояния в следующее, то есть преобразование:

где - состояния модели в - ый момент времени, представляющее собой вектор.

Введем в рассмотрение:

Вектор состояния внешней среды (вход модели) в -ый момент времени,

Вектор управления в -ый момент времени.

Тогда ИМ определяется заданием оператора , с помощью которого можно определить состояние модели в следующий момент времени по состоянию в текущий момент, векторам управления и внешней среды:

Это преобразование запишем в рекуррентной форме:

Оператор определяет имитационную модель сложной системы с ее структурой и параметрами.

Важное достоинство ИМ - возможность учета неконтролируемых факторов моделируемого объекта, представляющих собой вектор:

Тогда имеем:

Имитационная модель – это логико-математическое описание системы, которое может быть использовано в ходе проведения экспериментов на ЭВМ.

Рис.3. Состав ИМ сложной системы

Возвращаясь к проблеме имитационного моделирования сложной системы, условно выделим в ИМ: модель управляемого объекта, модель системы управления и модель внутренних случайных возмущений (Рис.3 ).

Входы модели управляемого объекта делятся на контролируемые управляемые и неконтролируемые неуправляемые возмущения. Последние генерируются датчиками случайных чисел по заданному закону распределения. Управление, в свою очередь является выходом модели системы управления, а возмущения – выходом датчиков случайных чисел (модели внутренних возмущений).

Здесь - алгоритм системы управления.

Имитация позволяет исследовать поведение моделируемого объекта в течение продолжительного интервала времени – динамическая имитация . В этом случае как говорилось выше трактуется как номер момента времени. Кроме этого можно исследовать поведение системы в определенный момент времени – статическая имитация , тогда трактуется как номер состояния.

При динамической имитации время может меняться с постоянным и переменным шагом (Рис.4 ):

Рис.4. Динамическая имитация

Здесь g i – моменты совершения событий в СДС, g * i – моменты совершения событий при динамической имитации с постоянным шагом, g ‘ i - моменты совершения событий при переменном шаге.

С постоянным шагом проще реализация, но меньше точность и могут быть пустые (то есть лишние) точки времени, когда рассчитывается состояние модели.

С переменным шагом время переходит от события к событию. Этот способ – более точное воспроизведение процесса, нет лишних расчетов, однако его труднее реализовать.

Основные положения , вытекающие из сказанного:

1. ИМ это численный метод и должен применяться тогда, когда другие методы использовать невозможно. Для сложных систем это в данный момент основной метод исследования.

2. Имитация это эксперимент, а значит, при ее проведении должна использоваться теория планирования эксперимента и обработки его результатов.

3. Чем более точно описывается поведение моделируемого объекта, тем точнее требуется модель. Чем точнее модель, тем она сложнее и требует больших ресурсов ЭВМ и времени для исследования. Поэтому надо искать компромисс между точностью модели и ее простотой.

Примеры решаемых задач: анализ проектов систем на различных стадиях, анализ действующих систем, использование в системах управления, использование в системах оптимизации и т.д.

Определим в общем виде как экспериментальный метод исследования реальной системы по ее имитационной модели, который сочетает особенности эксперименталь­ного подхода и специфические условия использования вычислительной техники.

В этом определении подчеркивается, что имитационное моделиро­вание является машинным методом моделирования благодаря развитию информационных технологий, что привело к появлению этого вида компьютерного моделирования. В определении также акцентируется внимание на экспериментальной природе имитации, применяется имитационный метод исследования (осуществляется эксперимент с моделью). В имитационном моделировании важную роль играет не только проведение, но и планирование эксперимента на модели. Однако это определение не проясняет, что собой представляет сама имитационная модель. Ответим на вопрос, в чем же состоит сущность имитационного моделирования?

  • реальная система;
  • ЭВМ, на которой осуществляется имитация – направленный вычислительный эксперимент.

логико - или логико-математических моделей, описываемых изучаемый процесс.

Выше, реальная система определялась как совокупность взаимодействующих элементов, функционирующих во времени.

< A , S , T > , где

А

S

Т

Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты:

  • с сохранением поведенческих свойств (последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.

:

  • статическое описание системы , которое по-существу является описанием ее структуры. При разработке имитационной модели необходимо применять структурный анализ моделируемых процессов.
  • функциональной модели

.

состояний набором переменных состояний , каждая комбинация которых описывает конкретное состояние. Следовательно, путем изменения значений этих переменных можно имитировать переход системы из одного состояния в другое. Таким образом, имитационное моделирование – это представле­ние динамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с определенными правилами. Эти изменения состояний могут происходить либо непрерывно, либо в дискретные моменты времени. Имитационное моделирование есть динамическое отражение изменений состояния системы с течением времени.

При имитационном моделировании логическая структура реальной системы отображается в модели, а также имитируется динамика взаимодействий подсистем в моделируемой системе.

Понятие о модельном времени

t 0 , которую называют

t 0 :

  • пошаговый
  • по-событийный

В случае пошагового метода (принцип t ).

  • непрерывные;
  • дискретные;
  • непрерывно-дискретные.

В

В

непрерывно-дискретные модели

Моделирующий алгоритм

Имитационный характер исследования предполагает наличие

алгоритмической , так и неалгоритмической.

моделирующий алгоритм

Имита­ционная модель – это программная реализация моделирующего алгоритма. Она составляется с применением средств автоматизации моделирования. Подробнее технология имитационного моделирования, инструментальные средства моделирования, языки и системы моделиро­вания, с помощью которых реализуются имитационные модели, будут рассмотрены ниже.

Общая технологическая схема имитационного моделирования

В общем виде технологическая схема имитационного моделирования представлена на рис.2.5.

Рис. 2.5. Технологическая схема имитационного моделирования

  1. реальная система;
  2. построение логико-математической модели;
  3. разработка моделирующего алгоритма;
  4. построение имитационной (машинной) модели;
  5. планирование и проведение имитационных экспериментов;
  6. обработка и анализ результатов;
  7. выводы о поведении реальной системы (принятие решений)

Имитационная модель содержит элементы непрерывного и дискрет­ного действия, поэтому применяется для исследования динамических систем, когда требуется анализ узких мест , исследование динамики функционирования,

Имитационное моделирование – эффективный аппарат исследова­ния стохастических систем, в условиях неопределенности, .

Что будет, если?

В имитационной модели может быть обеспечен различный, в том числе и высокий, уровень детализации моделируемых процессов. При этом модель создается поэтапно, эволюционно .

Определимметод имитационного моделирования в общем виде какэкспериментальный метод исследования реальной системы по ее имитационной модели, который сочетает особенности эксперименталь ного подхода и специфические условия использования вычислительной техники.

В этом определении подчеркивается, что имитационное моделиро вание является машинным методом моделирования благодаря развитию информационных технологий, что привело к появлению этого вида компьютерного моделирования. В определении также акцентируется внимание на экспериментальной природе имитации, применяется имитационный метод исследования (осуществляется эксперимент с моделью). В имитационном моделировании важную роль играет не только проведение, но и планирование эксперимента на модели. Однако это определение не проясняет, что собой представляет сама имитационная модель. Ответим на вопрос, в чем же состоит сущность имитационного моделирования?

В процессе имитационного моделирования (рис. 2.1) исследователь имеет дело с четырьмя основными элементами:

  • реальная система;
  • логико-математическая модель моделируемого объекта;
  • имитационная (машинная) модель;
  • ЭВМ,накоторойосуществляетсяимитация–направленный

вычислительный эксперимент.

Исследователь изучает реальную систему, разрабатывает логико-математическую модель реальной системы.

Выше,реальнаясистемаопределяласькаксовокупность взаимодействующих элементов, функционирующих во времени.

Составной характер сложной системы описывает представление ее модели в виде трех множеств:

< A , S , T > , где

А – множество элементов (в их число включается и внешняя среда);

S – множество допустимых связей между элементами (структура модели);

Т – множество рассматриваемых моментов времени.

Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты:

  • с сохранением их логической структуры;
  • с сохранением поведенческих свойств(последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.

При имитационном моделировании структура моделируемой системы адекватно отображается в модели, а процессы ее функционирования проигрываются (имитируются) на построенной модели. Поэтому построение имитационной модели заключается в описании структуры и процессов функционирования моделируемого объекта или системы.В описании имитационной модели выделяют две составляющие :

  • статическое описание системы , которое по-существу является описанием ее структуры. При разработке имитационной модели необходимоприменятьструктурныйанализмоделируемых процессов.
  • динамическое описание системы , или описание динамики взаимодействий ее элементов. При его составлении фактически требуется построениефункциональной модели моделируемых динамических процессов.

Идея метода, с точки зрения его программной реализации, состоит в следующем. Что, если элементам системы поставить в соответствие некоторые программные компоненты, а состояния этих элементов описывать с помощью переменных состояния. Элементы, по определению, взаимодействуют (или обмениваются информацией), значит, может быть реализован алгоритм функционирования отдельных элементов, т.е., моделирующий алгоритм. Кроме того, элементы существуют во времени, значит надо задать алгоритм изменения переменных состояний. Динамика в имитационных моделях реализуется с помощьюмеханизма продвижения модельного времени .

Отличительной особенностью метода имитационного моделирования является возможность описания и воспроизведения взаимодействия между различными элементами системы. Таким образом, чтобы составить имитационную модель, надо:

  • представить реальную систему (процесс), как совокупность взаимодействующих элементов;
  • алгоритмически описать функционирование отдельных элементов;
  • описать процесс взаимодействия различных элементов между собой и с внешней средой.

Ключевым моментом в имитационном моделировании является выделение и описаниесостояний системы. Система характеризуетсянабором переменных состояний , каждая комбинация которых описывает конкретное состояние. Следовательно, путем изменения значений этих переменных можно имитировать переход системы из одного состояния в другое. Таким образом, имитационное моделирование – это представле ниединамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с определенными правилами. Эти изменения состояний могут происходить либо непрерывно, либо в дискретные моменты времени. Имитационное моделированиеесть динамическое отражение изменений состояния системы с течением времени.

При имитационном моделировании логическая структура реальной системы отображается в модели, а такжеимитируетсядинамика взаимодействий подсистем в моделируемой системе.

Понятие о модельном времени. Дискретные и непрерывные имитационные модели

Для описания динамики моделируемых процессов в имитационном моделировании реализованмеханизм задания модельного времени. Этот механизм встроен в управляющие программы системы моделирования.

Если бы на ЭВМ имитировалось поведение одной компоненты системы, то выполнение действий в имитационной модели можно было бы осуществить последовательно, по пересчету временной координаты.

Чтобы обеспечить имитацию параллельных событий реальной системы вводят некоторую глобальную переменную (обеспечивающую синхронизацию всех событий в системе)t 0 , которую называютмодельным (или системным) временем.

Существуют два основных способа измененияt 0 :

  • пошаговый (применяются фиксированные интервалы изменения модельного времени);
  • по-событийный (применяются переменные интервалы изменения модельного времени, при этом величина шага измеряется интервалом до следующего события).

В случаепошагового метода продвижение времени происходит с минимально возможной постоянной длиной шага(принцип t ). Эти алгоритмы не очень эффективны с точки зрения использования машинного времени на их реализацию.

Способ фиксированного шага применяется в случаях:

  • если закон изменения от времени описывается интегро-дифференциальными уравнениями. Характерный пример: решение интегро-дифференциальных уравнений численным методом. В подобных методах шаг моделирования равен шагу интегрирования. Динамика модели является дискретным приближением реальных непрерывных процессов;
  • когда события распределены равномерно и можно подобрать шаг изменения временной координаты;
  • когда сложно предсказать появление определенных событий;
  • когда событий очень много и они появляются группами.

В остальных случаях применяется по-событийный метод, например, когда события распределены неравномерно на временной оси и появляются через значительные временные интервалы.

По-событийный метод (принцип “особых состояний”). В нем координаты времени меняются тогда, когда изменяется состояние системы. В по-событийных методах длина шага временного сдвига максимально возможная. Модельное время с текущего момента изменяется до ближайшего момента наступления следующего события. Применение по-событийного метода предпочтительнее в том случае, если частота наступления событий невелика. Тогда большая длина шага позволит ускорить ход модельного времени. На практике по-событийный метод получил наибольшее распространение.

Таким образом, вследствие последовательного характера обработки информации в ЭВМ, параллельные процессы, происходящие в модели, преобразуются с помощью рассмотренного механизма в последовательные. Такой способ представления носит название квазипараллельного процесса.

Простейшая классификация на основные виды имитационных моделей связана с применением двух этих способов продвижения модельного времени. Различают имитационные модели:

  • непрерывные;
  • дискретные;
  • непрерывно-дискретные.

Внепрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений.

Вдискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий). Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события.

Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработанынепрерывно-дискретные модели , в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Моделирующий алгоритм. Имитационная модель

Имитационный характер исследования предполагает наличиелогико, или логико-математических моделей, описываемых изучаемый процесс (систему).

Логико-математическая модель сложной системы может быть какалгоритмической , так инеалгоритмической.

Чтобы быть машинно-реализуемой, на основе логико-математической модели сложной системы строитсямоделирующий алгоритм , который описывает структуру и логику взаимодействия элементов в системе.

Имита ционная модель – это программная реализация моделирующего алгоритма. Она составляется с применением средств автоматизации моделирования. Подробнее технология имитационного моделирования, инструментальные средства моделирования, языки и системы моделиро вания, с помощью которых реализуются имитационные модели, будут рассмотрены ниже.

Возможности метода имитационного моделирования

Метод имитационного моделирования позволяет решать задачи высокой сложности, обеспечивает имитацию сложных и многообразных процессов, с большим количеством элементов. Отдельные функциональные зависимости в таких моделях могут описываться громоздкими математическими соотношениями. Поэтому имитационное моделирование эффективно используется в задачах исследования систем со сложной структурой с целью решения конкретных проблем.

Имитационная модель содержит элементы непрерывного и дискрет ного действия, поэтому применяется для исследования динамических систем, когда требуетсяанализ узких мест , исследованиединамики функционирования, когда желательно наблюдать на имитационной модели ход процесса в течение определенного времени.

Имитационное моделирование – эффективный аппарат исследова ниястохастических систем, когда исследуемая система может быть подвержена влиянию многочисленных случайных факторов сложной природы. Имеется возможность проводить исследованиев условиях неопределенности, при неполных и неточных данных.

Имитационное моделирование является важным фактором всистемах поддержки принятия решений , т.к. позволяет исследовать большое число альтернатив (вариантов решений), проигрывать различные сценарии при любых входных данных. Главное преимущество имитационного моделирования состоит в том, что исследователь для проверки новых стратегий и принятия решений, при изучении возможных ситуаций, всегда может получить ответ на вопрос “Что будет, если? ...”. Имитационная модель позволяет прогнозировать, когда речь идет о проектируемой системе или исследуются процессы развития (т.е. в тех случаях, когда реальной системы еще не существует).

В имитационной модели может быть обеспечен различный, в том числе и высокий,уровень детализациимоделируемых процессов. При этом модель создается поэтапно, эволюционно.

Имитационная модель – описание системы и ее поведения, которое может быть реализовано и исследовано в ходе операций на компьютере.

Имитационное моделирование чаще всего применяется для того, чтобы описать свойства большой системы при условии, что поведение составляющих ее объектов очень просто и четко сформулировано. Математическое описание тогда сводится к уровню статической обработки результатов моделирования при нахождении макроскопических характеристик системы. Такой компьютерный эксперимент фактически претендует на воспроизведение натурного эксперимента. Имитационное моделирование – это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны метода решения полученной модели. В этом случае математическая модель заменяется имитатором или имитационной моделью. Имитационное моделирование позволяет осуществить проверку гипотез, исследовать влияние различных факторов и параметров.

Имитационное моделирование – это метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности.

Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику. Экспериментирование с моделью называют имитацией.

Имитация – постижение сути явления без экспериментов на объекте.

Имитация как метод решения нетривиальных задач получила начальное развитие в связи с созданием ЭВМ в 1950 – 1960 г.г. Разновидности имитации: метод Монте-Карло (метод статических испытаний); метод имитационного моделирования (статическое моделирование).

Востребованность имитационного моделирования: 1)экспериментировать на реальном объекте дорого и невозможно; 2) аналитическую модель построить невозможно: в системе есть время, причинные связи, последствие, нелинейности, случайные переменные; 3) сымитировать поведение системы необходимо во времени.

Цель имитационного моделирования – воспроизведение поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами (разработке симулятора исследуемой предметной области для проведения различных экспериментов).

Виды имитационного моделирования.

Агентное моделирование – относительно новое (1990 – 2000 гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадиграх моделирования), а наоборот. Когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей – получить представление об этих глобальных правилах, общем поведении системы исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействий этих объектов в системе. Агент – некая сущность, обладающая активностью, автономным поведением; может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.

Дискретно-событийное моделирование – подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и др. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений – от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.

Системная динамика - для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По существу, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Форрестером в 1950 г.

Некоторые области применения имитационного моделирования: бизнес-процессы, боевые действия, динамика населения, дорожное движение, ИТ-инфраструктура, управление проектами, экосистемы. Популярные компьютерные системы имитационного моделирования: AnyLogic,Aimsun,Arena,eM-Plant,Powersim,GPSS.

Имитационное моделирование позволяет имитировать поведение системы во времени. Причем плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны и опасны.

Имитационное моделирование является мощным инструментом исследования поведения реальных систем. Методы имитационного моделирования позволяют собрать необходимую информацию о поведении системы путем создания ее компьютерной модели. Эта информация используется затем для проектирования системы.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами в предметной области для проведения различных экспериментов.

Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны.

К имитационному моделированию прибегают, когда:

1. Дорого или невозможно экспериментировать на реальном объекте.

2. Невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные.

3. Необходимо сымитировать поведение системы во времени.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950х — 1960х годах.

Можно выделить две разновидности имитации:

1. Метод Монте-Карло (метод статистических испытаний);

2. Метод имитационного моделирования (статистическое моделирование).

В настоящее время выделяют три направления имитационных моделей:

1. Агентное моделирование — относительно новое (1990е-2000е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот. Когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы.

Цель агентных моделей — получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Агент — некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.

2. Дискретно-событийное моделирование — подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений — от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов.


3. Системная динамика — парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии.

Основные понятия построения модели

Имитационное моделирование основано на воспроизведении с помощью компьютеров развернутого во времени процесса функционирования системы с учетом взаимодействия с внешней средой.

Основой всякой имитационной модели (ИМ) является:

· разработка модели исследуемой системы на основе частных имитационных моделей (модулей) подсистем, объединенных своими взаимодействиями в единое целое;

· выбор информативных (интегративных) характеристик объекта, способов их получения и анализа;

· построение модели воздействия внешней среды на систему в виде совокупности имитационных моделей внешних воздействующих факторов;

· выбор способа исследования имитационной модели в соответствии с методами планирования имитационных экспериментов (ИЭ).

Условно имитационную модель можно представить в виде действующих, программно (или аппаратно) реализованных блоков.

На рисунке показана структура имитационной модели. Блок имитации внешних воздействий (БИВВ) формирует реализации случайных или детерминированных процессов, имитирующих воздействия внешней среды на объект. Блок обработки результатов (БОР) предназначен для получения информативных характеристик исследуемого объекта. Необходимая для этого информация поступает из блока математической модели объекта (БМО). Блок управления (БУИМ) реализует способ исследования имитационной модели, основное его назначение - автоматизация процесса проведения ИЭ.

Целью имитационного моделирования является конструирование ИМ объекта и проведение ИЭ над ней для изучения закономерностей функционирования и поведения с учетом заданных ограничений и целевых функций в условиях имитации и взаимодействия с внешней средой.

Принципы и методы построения имитационных моделей

Процесс функционирования сложной системы можно рассматривать как смену ее состояний, описываемых ее фазовыми переменными

Z1(t), Z2(t), Zn(t) в n - мерном пространстве.

Задачей имитационного моделирования является получение траектории движения рассматриваемой системы в n - мерном пространстве (Z1, Z2, Zn), а также вычисление некоторых показателей, зависящих от выходных сигналов системы и характеризующих ее свойства.

В данном случае “движение” системы понимается в общем смысле - как любое изменение, происходящее в ней.

Известны два принципа построения модели процесса функционирования систем:

1. Принцип Δt для детерминированных систем

Предположим, что начальное состояние системы соответствует значениям Z1(t0), Z2(t0), Zn(t0). Принцип Δt предполагает преобразование модели системы к такому виду, чтобы значения Z1, Z2, Zn в момент времени t1 = t0 + Δt можно было вычислить через начальные значения, а в момент t2 = t1+ Δt через значения на предшествующем шаге и так для каждого i-ого шага (t = const, i = 1 M).

Для систем, где случайность является определяющим фактором, принцип Δt заключается в следующем:

1. Определяется условное распределение вероятности на первом шаге (t1 = t0+ Δt) для случайного вектора, обозначим его (Z1, Z2, Zn). Условие состоит в том, что начальное состояние системы соответствует точке траектории.

2. Вычисляются значения координат точки траектории движения системы (t1 = t0+ Δt), как значения координат случайного вектора, заданного распределением, найденным на предыдущем шаге.

3. Отыскиваются условное распределение вектора на втором шаге (t2 = t1 + Δ t), при условии получения соответствующих значений на первом шаге и т.д., пока ti = t0 + i Δ t не примет значения (tМ = t0 + М Δ t).

Принцип Δ t является универсальным, применим для широкого класса систем. Его недостатком является неэкономичность с точки зрения затрат машинного времени.

2. Принцип особых состояний (принцип δz).

При рассмотрении некоторых видов систем можно выделить два вида состояний δz:

1. Обычное, в котором система находится большую часть времени, при этом Zi(t), (i=1 n) изменяются плавно;

2. Особое, характерное для системы в некоторые моменты времени, причем состояние системы изменяется в эти моменты скачком.

Принцип особых состояний отличается от принципа Δt тем, что шаги по времени в этом случае не постоянны, является величиной случайной и вычисляется в соответствии с информацией о предыдущем особом состоянии.

Примерами систем, имеющих особые состояния, являются системы массового обслуживания. Особые состояния появляются в моменты поступления заявок, в моменты освобождения каналов и т.д.

Основные методы имитационного моделирования.

Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод.

Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Метод назван условно, так как он объединяет возможности имитации процесса, модель которого получена в виде аналитически замкнутого решения, или решения полученного методами вычислительной математики.

Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это - численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла). В последствии этот метод стал применяться для имитации процессов, происходящих в системах, внутри которых есть источник случайности или которые подвержены случайным воздействиям. Он получил название метода статистического моделирования.

Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических так и аналитических моделей, которые взаимодействуют как единое целое. Причем в набор модулей могут входить не только модули соответствующие динамическим моделям, но и модули соответствующие статическим математическим моделям.

Вопросы для самопроверки

1. Определить, что такое оптимизационная математическую модель.

2. Для чего могут использоваться оптимизационные модели?

3. Определить особенности имитационного моделирования.

4. Дать характеристику метода статистического моделирования.

5. Что есть модель типа «черный ящик», модель состава, структуры, модель типа «белый ящик»?